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APPLICATIONS OF MODERN HYDRODYNAMICS TO AERONAUTICS.
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PART I.

FUNDAMENTAL CONCEPTS AND THE MOST IMPORTANT THEOREMS.

1. All actual fluids show internal friction (viscosity), yet the forces due to viscosity, with

the dimensions and velocities ordinarily occurring in practice, are so very small in comparison
with the forces due to inertia, for water as well as for air, that we seem justified, as a first ap-
proximation, in entirely neglecting viscosity. Since the consideration of viscosity in the
mathematical treatment of the problem introduces difficulties which have so far been overcome

only in a few specially simple cases, we are forced to neglect entirely internal friction unless we
wish to do without the mathematical treatment.

We must now ask how far this is allowable for actual fluids, and how far not. A closer
examination shows us that for the interior of the fluid we can immediately apply our knowl-

edge of the motion of a nonviscous fluid, but that care must be taken in considering the layers
of the fluid in the immediate neighborhood of solid bodies. Friction between fluid and solid
body never comes into consideration in the fields of application to be treated here, because it
is established by reliable experiments that fluids like water and air never slide on the surface
of the body; what happens is, the final fluid layer immediately in contact with the body is
attached to it (is a_ rest relative to it), and all the friction of fluids with solid bodies is therefore

an internal friction of the fluid. Theory and experiment agree in indicating that the transition
from the velocity of the body to that of the stream in such a case takes place in a thin layer of
the fluid, which is so much the thinner, the less the viscosity. In this layer, which we call the

boundary layer, the forces due to viscosity are of the same order of magnitude as the forces due
to inertia, as may be seen without difticulty. _ It is therefore important to prove that, however
small the viscosity is, there are always in a boundary layer on the surface of the body forces
due to viscosity (reckoned per unit volume) which are of the same order of magnitude as those
due to inertia. Closer investigation concerning this shows that under certain conditions there
may occur a reversal of flow in the boundary layer, and as a consequence a stopping of the fluid
in the layer which is set in rotation by the viscous forces, so that, further on, the whole flow is
changed owing to the formation _)f vortices. The analysis of the phenomena which lead to the
formation of vortices shows that it takes place where the fluid experiences a retardation of flow

along the body. The retardation in so_le cases must reach a certain finite amount so that a
reverse flow arises. Such retardation of flow occurs regularly in the rear of blunt bodies; there-
fore vortices are formed there very soon after the flow begins, and consequently the results
which are furnished by the theory of nonviscous flow can not be applied. On the other hand,
in the rear of very tapering bodies the retardations are often so small that there is no noticeable
formation of vortices. The principal" successful results of hydrodynamics apply to this case.

Since it is these tapering bodies which offer specially small resistance and which, therefore,
have found special consideration in aeronautics under similar applications, the theory can be
made useful exactly for those bodies which are of most technical interest.

1 From this consideration one can calculate the approximate thickness ol the boundary layer for each special case.
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For the considerations which follow we obtain from what has gone before the result that

in the interior of the fluid its viscosity, if it is small, has m) essential influence, but that for

layers of the fluid in immediate contact with solid bodies exceptions to the laws of a nonviscous
fluid must be allowable. We shall try to formulate these exceptions so as to be, as far as possi-

ble, in agreement with the facts of experiment.

2. A further remark must be made concerning the effect of the compressibility of the

fluid upon the character of the flow in the case of the motion of solid bodies in the fluid. All
actual fluids are compressible. In order to compress a volume of air by 1 per cent, a pressure
of about one one-hundredth of an atmosphere is needed. In the case of water, to produce an

equal change in volume, a pressure of 200 atmospheres is required; the difference therefore is
very great. With water it is nearly always allowable to neglect the changes in volume arising
from the pressure differences due to the motions, and therefore to treat it as absolutely incom-
pressible. But also in the case of motions in air we can ignore the compressibility so long as
the pressure differences caused by the motion are sufliciently small. Consideration of compressi-

bility in the mathematical treatment of flow phenomena introduces such great difficulties that
we will quietly neglect volume changes of several per cent, and in the calculations air will be
looked upon as incompressible. A compression of 3 per cent, for instance, occurs in front of a

body which is being moved with a velocity of about 80 m./sec, it is seen, then, that it appears
allowable to neglect the compressibility in the ordinary applications to technical aeronautics.
Only with the blades of the air screw do essentially greater velocities occur, and in this case the
influence of the compressibility is to be expected and has already been observed. The motion

of a body with great velocity has been investigated up to the present, only along general lines.
It appears that if the velocity of motion exceeds that of sound for the fluid, the phenomena are
changed entirely, but that up close to this velocity the flow is approximately of the same char-

acter as in an incompressible fluid.

3. We shall concern ourselves in what follows only with a nonviscous and incompressible

fluid, about which we have learned that it will furnish an approximati(/n sufficient for our

applications, with the reservations made. Such a flui(I is also called "the ideal fluid."
What are the properties of such an ideal fluid ? I do not consider it here iny task to develop

and to prove all of timm, since the theorems of classical hydrodynamics are contained in all
textbooks on the subject and may be studied there. I propose to state in what follows, for
the benefit of those readers who have not yet studied hydrodynamics, the most important

principles and theorems which will be needed for further developnmnts, in such a manner that
these developments may he grasped. 1 ask these readers, therefore, simply to believe the
theorems which I shall state until they }lave the time to study the subject in some textbook

on hydrodynamics.
The principal method of description of problems in hydrodynamics consists in expressing in

formulas as functions of space and time the velocity of flow, given t)y its three rectangular coln-

ponents, u, v, w, and in addition the fluid pressure p. Tim condition of flow is evidently com-
pletely known if u, v, w, and p are given as functions of x, y, z, and t, since then u, v, w, and p
can be calculated for any arbitrarily selected point amt for every instant of time. The direc-

tion of flow is defined by the ratios of u, v, and w/ the magnitude of the velocity is -v_u_+v2+ w =.
The "streamlines" will be obtained if lines are drawn which coincide with the direction of

flow at all points where they touch, which can be accomplished mathematically by an inte-
gration. If the flow described by the formulas is to be that caused by a definite body, then
at those points in space, which at any instant form the surfacc of the body, the components of
the fluid velocity normal to this surface must coincide with the corresponding components
of the velocity of the body. In this way the condition is expressed that neither does the fluid

penetrate into the body nor is there any gap between it and the fluid. If the body is at rest
in a stream, the normal components of the velocity at its surface must be zero; that is, the flow

must be tangential to the surface, which in this case therefore is formed of stream lines.
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4. In a stationary flow--that ix, in a flow which does not change with the time, in which

then every new liuid particle, when it repl'wes am)ther particle in fi'ont of it, assumes its velocity,
both in magnitude and in direction and also the ._;'tme pressure--there is, for the fluid particles
Iying on the same stream line, a very remarkable relation between the magnitude of the velocity,
designated here by V, and the pressure, the so-called Bernouilli equation--

P _,2 = const. (1)P_2

(p is the density of the fluid, i. e., the imlsa of a unit volume). This relation is at. ()nee appli-
cable to the case of a body nn)ving uniformly a_[ in a straight line in "t i[uid _it rt_st, for we nre

always at liberty to use for our diseussi(ms any referen('e system having a uniform motion in a
straight line. If we makc the "velocity of the reference system coin('ide with that of the body,
then the b()dy is at rest with reference to it., and the [low _tround it, is stationary. If now V
is the velocity of the body rel,ltive to the stati[mary air, the 1,Ltter will have in the new refer°

er)ce system the veh)cit.y V up(m the body (_l mnn on ,m nii'pbme in llight makes observations
in terms of such a reference systenl, ahd feels the nmti(>n of flight as "wind").

The tlmv of incident air ix divided a_ a bhmt body, as shown it) tigure 1. At the point A
the flow comes completely to rest. and then is again set in motion in opposite (lircctions, tan-
gential to the surface of the body. We le_rn fi'om equation
(1) that at such a point, whi(.h we shall cMI a "rest-Doint,"

0 I": then in the undisturbed
the pressure must be gre'tter by 2

fluid. We sh:dl call the magnitude of t_his pressure, of which
we shall make frequent use, the "dyn,nmical pressure," and
shall designate it by q. An open end of a tube facing the

stream produces a rest point of a similar kind, and there, arises
in the interior of the tube, as very careful experiments have
shown, the exact dynamical pressure, so that this principle
can be used for the measurement of the velocity, and is in
fact much used. The dynamical pressure is also well suited

Fig;, 1. FI,,w ;).r_llild :l blunt I_My.

to express the laws of air resistance. It is known that this resistance is proportional to

the square of the velocity and to t[_e density of the medium" but q_:,P) l"_; so the law of air

resistance may also be exl)ressed by the formula

li'=c. F.q (2)

wi_erc F is the area of the surface and c is _ pure number. With this mode of expression it

appears very clearly that, the force called the "drag" is eqmfl t(, surface times pressm'e differ-
ence (the formula has the same forln as the one for the piston force in 't steam engine). This
mode of stating the relation h_s.been inlrodueed in Gernmny and Austria and has proved use-
ful. The air-resistance coclTmients then be('onm twice as h_rge as the "absolute" coefficients
previously used.

Since V 2 can not become less than zero, an in('reasc of pressure greater than q can not, by
equation (1), occur. For diminution of pressure, however, no definite limit c'm be set. In
the case of flow past convex surfaces marked increases of velo_'ity of flow occur and in connection
with them diminutions of pressure which frequently _mount to 3q and more.

5. A series of typical properties of motion of nonviscous fluids may be deduced in a useful
manner from the following theorem, which is due lo Lord Kelvin. Before the theorem itself
is stated, two concepts must be defined. 1. The circulation: Consider the line integral of the

velocity f V cos (V, ds). d,_', which is formed exactly like the linc integral of a force, which is
called "the work of the force." The amount of this line integrtd, taken over a path which
returns on itself is called the circulation of the flow. 2. The fluid linc: By this is meant a line
which is always formed of the same fluid particles, which therefore shares in the motion of the
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fluid. Tile theorem of l,ord Kelvin is: In a m)nviscous fluid the circulation along every fluid
line remains unchanged as time goes on. But the following must be added:

(1) The case may arise that a fluid line is intersected by a solid body moving in the fluid.
If this occurs, the theorem ceases to apply. As an example I mention the case in which one

pushes a flat phlte into a fluid at rest, and then hy means of the plate exerts a pressure on the
fluid. By this a circulation arises which will remain if afterwards the plate is quickly withdrawn
in its own plane. See figure 2.

(2) In order that the theorem may apply, we must exclude mass forces of such a character
that work is furnished by them along a path which returns on itself. Such forces do not ordi-

narily arise and need not be taken into account here, where we are concerned regularly only
with gravity.

(3) The fluid must be homogeneous, i. e., of the same density at all points. We can easily
see that in the case of nonuniform density circulation can arise of itself in the course of time
if we think of the natural ascent_ of heated air in the midst of cold air. The circulation increases

continuously along a line which passes upward in the warm air and returns downward in tile
cold air.

Frequc,ltly tim case a,'ises that tile fluid at the beginning is at rest or in absolutely uniform
motion, so that the circulation for every imaginable closed line in the fluid is zero. Our theorem
then says that for every closed line that can arise from one of the originally closed lines the
circulation remains zero, in which we must make exception, as mentioned above, of those lines

which are cut by bodies. If the line integral along every closed line is zero, the line integral
for an open eurve froln a detinite point 0 to an arbitrary p,,int P is independent of the selection

of the line along which the integral is taken (if this were not so, and if the

/_._ .,,_, integrals along tw,, lines from O to P were different, it is evident that the

_..M__j_/// /. _ line integral ahmg tile closed curve OPO would not be zero, which contra-
.... dicts our premise). Tile line integral along the line OP depends, therefore, -

since we will consider once for all th_ point O as a tixed on'e, only on the coordi-
FIG. 2 --l'roductk)n of t'ir-

¢,,l.,tio_,),: _,,,_,_,_u_,-natcs of the point P, or, expressed differently, it is a function of these eoor-
)ionand _ith(1...... _1 of dinates. From analogy with corresponding considerations in the ease of
Ilat pla_c, iiehts of force, this line integral is called the "velocity potential," and the

particular kind of motion in which such a potential exists is called a "potential motion." As

follows immediateIy from the meaning of line integrals, the component of the velocity in a
detinite direction is the derivative of the potential in this direction. If the line-element is

perpendicular to the resultant veh)eity, the increase of the potential equals zero, i. e., the sur-
faces of constant potential are everywhere normal to tile velocity of tlow. The velocity itselI
is called the gradient of the pt_tential. The velocity comp()nents _, v, w are connected with the
potential eo by the following equations:

0_ 04, 04,
U=Ox, v = Oy, w= Oz (3)

The fact that the flow takes place without any change in volume is expressed by stating that
as much flows out of (,very element of volume as ttows in. This lea,Is to the equation

Ox + Oy OZ =0 (4)

In the case of potential flow we therefore have

OzO, 0% 0%=0
Ox2 _-Oy2+ O& (4a)

as the condition for flow without change in volume. All functions _I)(z, y, z, t), which satisfy
this last equation, represent possible forms of flow. This representation of a flow is specially
convenient for calculations, since by it the entire flow is given by means of the one function ¢.
The most valuable property of the representations is, though, that the sum of two, or of as
many as one desires, functions ,I,, each of which satisfies equation (4a), also satisfies this equation.
and therefore represents a possible type of flow (" superposition of flows").

4
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6. Another concept can be derived from the circulation, which is convenient for many con-
siderations, viz, that of rotation. The component of the rotation with reference to any axis

is obtained if the circulation is taken around an elementary surface of unit area in a plane
perpendicular to the axis. Expressed more exactly, such a rotation component is the ratio of
the circulation around the edge of any such infinitesimal surface to the area of the surface. The

total rotation is a vector and is obtained from the rotation components for three mutually per-
pendicular axes. In the case that the fluid rotates like a rigid body, the rotation thus defined

comes out as twice the angular veh)city of the rigid body. if we take a rectangular system of
axes and consider tile rotations with reference to the separate axes, we find that the rotation can
also be expressed as the geometrical sum of the angular velocities with reference to the three axes.

The statement that in the case of a potential motion the circulation is zero for ever)"
closed'fluid line can now he expressed by saying the rotation in it is always zero. The theorem

that the circulation, if it is zero, remains zero under the conditions mentioned, can also now
be expressed by saying that, if these conditions are satisfied in a tluid in which there is no
rotation, rotation can never arise. An irrotational fluid motion, therefore, always remains
irrotational. In this, however, tile following exceptions are to be noted: If the fluid is divided

owing to bodies being present in it, the theorem nnder consideration does not apply to the
fluid layer in which the divided flow reunites, not only in the case of figure 2 but also in the

case of stationary phenomena as in figure 3,
since in this case a closed fluid line drawn in

front of the body can not be transforlned into

a fluid line that intersects the region where the
fluid streams come together. Figure 3 shows
four successive shapes of such a fluid line. This
region is, besides, filled with fluid particles which
have come very close to the body. We are
therefore led to the conclusion from the stand-

point of a fluid with very small but not entirely

vanishing viscosity that the appearance of vor-
tices at the points of reunion of the llow in the
rear of the body does not contradict the laws of hydrodynamics. The three components of the
rotation (, _, _- arc expressed as follows by means of the velocity c<)mponents u, v, w.

bw by bu. bw by 5u. (5:
= b :1- 5z, ,7= 5z - 5.r ' _ = bx- 5y

If the velocity components are derived from a potential, as shown in equation (2), the rotation
0:cb o3-_,1,

components, according to equation (5) vanish identically, since r?zOy= OyOz

7. Very remarkable theorems hold for the rotation, which were discovered by v. Itelmholtz
and stated in his famous work r)n vortex motions. Concerning the geometrical properties of the
rotation the following must be said:

At all points of the fluid where rotation exists the direction of the resultant rotation axes
can be indicated, and lines can also be drawn whose directi()ns coincide everywhere with these
axes, just as the stream lines are drawn so as to coincide with the directions of the velocity.
These lines will be calh_d, following tIelmtmltz, "vortex lines." The vortex lines through the
points of a small closed curve form'a tube called a "vortex tube." It: is an immediate con-
sequence of the geometrical idea of rotation as deduced above that through the entire extent
of a vortex tube its strength i.e., the circulation around the boundary of the tube is constant.
It is seen, in fact, that on geometrical grounds the space distribution of rotation quite inde-
pendently of the special properties of the velocity field from which it is deduced is of the same
nature as the space distribution of the velocities in an incompressible fluid. Consequently a

vortex tube, just like a stream line in an incompressible fluid, can n,)t end anywhere in the
interior of the fluid; and the strength of the vortex, exaet.ly like the quantity of fluid passing
per second through the tube of stream lines, has at one and ttte same instant the same value
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throughout the vortex tube. If Lord Kelvin's theorem is now applied to the closed fluid line
which forms the edge of a small element of the surface of a vortex tube, the circulation along it
is zero, since the surface inclosed is parallel to the rotation axis at that point. Since the circula-
tion can not change with the time, it follows that the element of surface at all later times will

also be part of the surface of a vortex tube. If we picture the entire bounding surface of a vortex

tube as made up of such elementary surfaces, it is evident, that, since as the motion continues
this relation remains unchanged, the particles of the fluid which at any one time have formed
the boundary of a vortex tube will continue to form its boundary. From the consideration
of the circulation along a closed line inclosing the vortex tube. we see that this circulation--i, e.,
the strength of our vortex tube -has the same value at all times. Thds we have obtained the
theorems of Helmholtz, which now can he expressed as follows, calling the contents of a vortex
tube a "vortex filament": "The particles of a fluid which at any instant belong to a vortex
filament always remain in it: the strength of a vortex filament throughout its extent and for
all time has the same value." From this follows, among other things, that if a portion of the
filament is stretched, say, to double its length, and thereby its cross section made one-hMf as

great, then the rotation is doubled, because the strength of the w)rtex, the product of the rota-
tion and the cross section, must remain the same. We arrive, therefore, at the result that the
vector expressing the rotation is changed in magnitude and direction exactly as the distance

between two neighboring particles on the axis of the filament is changed.

8. From the way the strengths of vortices h'_ve been define(] it fol|ows for a space filled
with any arbitrary vortex filaments, as a consequence of a known theorem of Stokes, that
the circulation arouml any closed line is equal to the algebraic sum of the vortex strengths
of all the filaments which cross a suHace having the closed line as its boundary. If this closed

line is in any way continuously ch.mged so that filaments are thereby cut, then evidently the
circulation is changed according to the extent of the strengths of the vortices which arc cut.
Conversely we may conclude from the circumstance that the circulation around a closed lino

(which naturally can not be a fluid line) is changed by a definite amount by a certain displace-
ment, that by the displacement vortex strength of this amount will be cut, or expressed differ-
ently, that the surface passed over by the closed line in its displacement is traversed by vortex
filaments whose strengths add up algebraically to the amount of the change in the circulation.

The theorems concerning vortex motion are specially important because in many cases
it is easier to make a statement as to the shape of the vortex filaments than as to the shape of
the stream lines, and because there is a mode of e'dculation by means of which the velocity

at any point of the space may be determined from a knowledge of the distribution of the rota-
tion. This formula, so important for us, must now be discussed. If F is the strength of a
thin vortex filament and ds an element of its medial line, and if, further, r is the distanco from
the vortex element to a point P at which the velocity is to be calculated, finally if a is the angle

between ds and r, then the amount of the velocity due to the vortex element is

dv = p ds sin a.
4 r r2 ' (6)

the direction of this contribution to the velocity is perpendicular to the plane of ds and r. The
total veh)city at the point P is obtained if the contributions of all the vortex elements present
in the space are added. The law for this calculation agrees then exactly with that of Biot-
Savart, by the help of which the magne{ic fieht due to an electric current is calculated. Vor-
tex filaments correspond in it to the electric currents, and the vector of the velocity to the
vector of the magnetic field.

As an example we may take an infinitely long straight vortex filament. The contributions
to the velocity at a point P are all in the same direction, and the total velocity can b'e deter-
mined by a simple integration of equation (6). Therefore this velocity is

+_c

P F ds.sin a
v _ 47rJ r_"
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hAs seen by figure 4, s =h ctg c_, and by differentiation, ds .... dct. Further r= . ;
sin c_ sin c_

so that
T

F f F . I'
v=4 /sin _da= - [cos (6a)rh. 4_-h c_]o =27rh

o

This result could be deduced in a simpler manner from the concept of circulation if we were
to use the theorem, already proved, that the circulation for any closed line coincides with
the vortex strength of the filaments whici_ are inclosed by it. The circulation for every closed
line which goes once around a single filament must therefore coincide with its strength. If
the velocity at a point of a circle of radius h around our straight filament equals v then this

F
circulation equals "path times veloeity"=2rh.v, whence immediately follows v=2_- h. The

more exact investigation of this velocity field shows that for every point outside tlm filament
(and the formula applies only to such points) the rotation is zero, so that in fact. we are treat-
ing the case of a velocity distribution in which only along the axis does rotation prevail, at
all other points rotation is not present.

For a finite portion of a straight vortex tilament the preceding calculation gives the value

v =4_h(COS a_ -- _os _2) (6b)

This formula may be applied only for a series of portions of vortices which together give an
infinite or a closed line. The velocity field nf a single portion of a filament would require
rotation also outside the filament, in the sense that from the end of

the portion of the filament vortex lines spread out in all the space
and then all return together at the beginning of the portion. In the
ease of a line that has no ends this external rotation is removed,

since one end always coincides with the beginning of another portion
of equal strength, and rotation is present only where it is predicated
in the calculation.

FIG, 4,--\'vie}f 'it y-lield due to infinite

fecli_illear _ ortex.

9. If one wishes to represent the flow around solid bodies in a flui(!, one can in many cases
proceed by imagining the place of thc solid bodies takcn by the fluid, in the interior of which
disturbances of flow (singularities) are introduced, t)y which the flow is so altered that the
boundaries of the bodies become streamline surfaces. For such hypothetical constructions
in the interior of the space actually occupied by the body, one can assume, for instance, any
suitably sclected vortices, which, however, since they are only imaginary, need not obey the
laws of Helmholtz. As we shall see later, such imaginary vortices can be the seat of liftii_g
forces. Sources and sinks also, i. e., points where ttuid continuously appears, or disappears,
offer a useful metho(l for cnhstruetions of this kind. While vortex tilaments can aetually

occur in the fluid, such sources and sinks may tie assmned only in that part of tlm space which
actually is occupied by the body, since they represent a phenomenon which can not be realized.
A contradiction of the law of the conservation of matter is avoided, however, if there are assumed

to be inside the body both sources and sinks, of equal strengths, so that the fluid produced by
the sources is taken back again by the sinks.

The method of sources aud sinks will be described in greater detail when certain practical

problems are discussed; but at this point, to make the matter clearer, the distribution of veloci-
ties in the case of a source may be described. It is very simple, the flow takes place out from
the source uniformly on all sides in the direction of the radii. Let us describe around the point

source a concentric spherical surface, then, if the lluid output per second is Q, the velocity at
the surface is

Q
v=4_?; (7)

7
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the velocity therefore decreases inversely proportional to the square of the distance. The
tlow is a potential one, the potential comes out (as line-integral along the radius)

ee= coast. - Q
47rr (7a)

If a uniform velocity toward the right of the whole fluid mass is superimposed on this

velocity distribution--while the point source remains stationary--then a flow is obtained
which, at a considerable distance from the source, is in straight lines from left to right. The
fluid coming out of the source is therefore pressed toward the right (see fig. 5) ; it fills, at some

distance from the source, a cylinder whose diameter may be determined easily. If V is the
velocity of the uniform flow, the radius r of the cylinder is given by the condition Q=Trr:. V.
All that is necessary now is to assume on the axis of the source further to the right a sink of
the same strength as the source for the whole mass of fluid from the source to vanish in this,
and the tlow closes up behind the sink again exactly as it ol)encd out in front of the source.
In this way we obtain the tIow around an elongated body with blunt cads.

10. The special ease when in a fluid flow the phenomena in all planes which are parallel
to a given plane (.oincide absolutely plays an important r61c both practically and theoretically.

FIG. 5.--Superp)sitiun of uniform flow and that caused by a st)urce,

If the lines which connect the corresponding
points of the different planes are perpendicular to
the planes, and all the streamlines are plane
curves which lie entirely in one of those plane_,
we speak of a uniphmar tlow. The tlow around
a strut whose axis is perpendicular to the direc-
tion of the wind is an example of such a motion.

The mathem,ltical treatment of plane poten-
tial flow of the ideal fluid has been worked out

specially completely more than any other prob-
lem in hydrodynamics. This is due to the fact
that with the help of the complex quantities

(x+iy, where i= w/-1, is called .the imaginary
unit) there can be deduced from every analytic
function a case of flow of this type which is incom-

pressible and irrotational. Every real function, ee (x, y) and ,I, (z, y), which satisfies the relation

ee+ i_' = f(x + iy) , (8)

where f is any analytic function, is the potential of such a flow. This can be seen from these

considerations: Let x +ig be put = z, where z is now a "complex number." Differentiate equa-
tion (8) first with reference to x and then wi_h reference to y, thus giving

Oee. 2,I, dfoz df
Ox + _Ox = [tz Ox=-dz

oee .o,I, df oz .d] .oee o,I,
-t-_ = ='_ = --

Oy Oy dz Oy dz _Ox Oy

In these the real parts on the two sides of the equations must be equal and the imaginary
parts also. If ee is selected as the potential, the velocity compon_nts u and v are given by

bee O'P Oee i}'_
u ...... (9)

Ox Oy' v=oy _z

Ou Ov
If now we write the expressions Ox+Oy (continuity) and Ov OuOx--Oy (rotation) first in terms of

ee and then of ,t,, they become
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itu 4- Ov O:qb i)2cl, O:'I' _ O:'I' ]

Ox Oy=O_,24-Oy2--i)yOX___oCtXO!/[.

Ov i)u 0'_ O_"b 029 O'T I

Ox Oy = Oyax-= oaXOy = ax _" Oy:]l

(lO)

It is seen therefore that not only is the motion irr()tational (as is se!f-evident since there is

a potential), hut it is also continuous. The relation a:4 a=4
0X2 q-/)y2 = O besides corresponds exactly

to our equation (4a). Since it is salisfied also hy ,P, this can also he used as potential.

The fun('tion q,, however, has, with reference to the flow deduced by using (1, as potential, a

special individual meaning. From equation (8) we can easily deduce that the lines q,- ctmst.

are parallel to the velocity; therefore, in other words, they are streamlines, in fact if we put

. a,I,. 0,I'. dg Ox '_,
d'I' = Ox(lx + agd:l! = o, then dx = 0,I, = u

ay

which expresses ttle fact of parallelism. The lines ,I,= const, are _l_(,refore perpemticular to the

lines q)= const. If we draw families of lines, 4_= const, and ,I,= const:, for values of ,¢ and ,I,

which differ from each other by the same small amount, it folh)ws from the easily derive[I

equationd4+id'I'=Jz(dx+id,/) that the two bundles form a square network; from which fol-

lows that the diagon,fl curves of the network again form an orthogonal and in fact a square

network. This fact can be used practically in drawing such families of curves, because an error

in the drawing can be recognized t)y the eye in the wrong shape of the network of diagonal

curves and so can I)e improved. With a little practice fairly good accuracy may be obtained

hy simply using the eye. Naturally there are also mathematical methods for further improve-

ment of such networks of curves. The function ,I,, which is called the "stream function,"

has another special meaning. If we consider two strew'relines _I,---,I,, aml 'I,=,Iq, the quantity

of fluid which flows between the two streamlines in a unit of time in a region of uniplanar flow

of thickness 1 equals _,,:-qq. In fact if we consider the flow through a plane perpendicular to

the X-axis, this quantity is

(i Yl _ _l ,t] gL

The numerical value of the stream function coincides therefore with the quantity of fluid which

flows between the point x, y aml the streamline 'I,= o.

As an example let the function .

_P+ i,P = .4 (x + iy)"

be discussed briefly. It is simplest in general to ask first about the streamline 'I,=o. As is

well known, if a transformation is made from rect.mgular coordinates to polar ones r, _, (x +iy) _

=r" (cos n¢+i sin n¢). The imaginary part of this expression is ir _ sin n_. This is to I)e

put equal to i,l,. ,I, - o therefore gives sin n_ = o, i. e., n¢ _ o, 7r, '27r, etc. The streamlines ,I, = o

are therefore straight lines through the origin of coordinates, which make an angle a=Tr with

each other, the flow is therefore the potential flow between two plane walls making the angle

a with each other. The other streamlines satisfy the equation r" sin n_=const. The veloci-

ties can be obtained by differentiation, e. g., with reference to x:

0,I, ,0q¢

ax+zax --u-iv= :in (x +iy) "-_ =Ant °-_ {cos (n-1) _ +i sin (n-I)_}
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For r=o this expression becomes zero or infinite, according as _, is greater or less than 11, i. e.,
according as the angle a is less or greater than rr( 180°). Figures 6 and 7 give the streamlines

11" 3 c) ,

for a =4 = 45° and ,27r---270 °, corresponding to ,_= 4 and 3" I n the ease of figure 7 the velocity,

as just explained, becomes infinite at the corner. It would lie expected that in the case of
the actual tlow some effect due to friction would enter. In fact there are observed at such

corners, at the beginning of the motion, great _'elocities, and immediately thereafter the for-
marion of vortices, by whivh the motion is so changed that the velocity
at the corner becomes finite.

It must also be noted that with nn equatiorr

p +iq = _(z +iy) II 1)

the x-?i plane can be mapped upon tim io-_t plane, since to every pair
of wflues x,y a pair o! values p,q eorr¢:sponds, to ever)- point of the x-g

plane corresponds a point of the p-q plane, and therefore also to every
v,,_. < v.,,T,;....... , .... _,,, element, of a line or to every curve in the former plane a linear element

t,,(,.... pa,,(. ,,-_m...... kJ,,_ and a curve in the latter plane. The transformation keeps all anglesan angle a.-47_ ° with each

oth,._, unchanged, i. e., corresponding lines intersect in both figures at the same
angle.

By inverting the function _ of equal.ion (11) we can write

x+iy=x (p+iq)

and therefore deduce from equation (S) that

_l,+ i,_ - f [x(p + iq)] = i" (p + iq) (12)

q_ and g, are connected therefore with p and q by an equation of the type of equation (8), and
hence, in the p q plane, are potential and stream functions of a flow, and further of that flow

which arises from the translormation of the +, ,i, net.work in the ac-y pla_F into the p-g plane.
This is a powerful method used to obtain by transformation from a known simple flow

new types of tlow for ottfer given boundaries. Applications of this wili be given in section 1t

11. The discussion of the principles of the hydrodymmlies of nonviseous fluids to be
applied by us may be stopped here. I add hut one eonsidera-

// - "tion, which has reference to a very usef:,l theorc:n for 0btai:fing .,.... / ______

remthef,)rccSforstationaryinfluid nlotit)n,motions.,,nanlely the so-called "momcnt unl lhco- /)///,/J____//_,_

We have t.o apply to fluid motion the theo,'eln of general /

mechanics, which states that the rate of change with the time '//of the linear momen_.u;n is equal to tim resultant, of all the ex-

tluid separated from the rest of the ttuid !_y a closed surfaee.
This surface may, in aecoc(lanee with the spirit of the theorem, J

be considered as a "fluid surfaee," i. e., made up ahvays of t_. 7.--Uniplanar tlow ......... l phme

the same tluid particles. V_e must now state in a formula the ,,-,_n_,,,_kmg_n_m,l,_r0",,'i,h _,_l,

ehange of ti_e momemum of the fluid within the surface. If, as
we shah assume, the flow is stationary, then after a time dt every ttuid particle in the interior
will be replaced by another, which has the san'e velocity as had the former. On the boundary,
however, owing to its displacement,, mass will pass out at the side where the fluid is approaching,
and a corresponding mass will enter on the side away from which the flow takes plaee. If dS

is the area of an dement of surface, and v, the component of the velocity in the direetion of
the outward drawn normal at this element, then at this point, dra--pdS . v, dr. If we wish
to derive the component of the " impulse "--defined as the time rate of the change of momen-
tum-for any direction s, the contribution to it of the element of surface is

dm
dg, = v,_ =pdS . v_v, (13)

10
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With this formula we have made the transition from the fluid surface to a corresponding solid
"control surface."

The external forces are compounded of the fluid pressures on the control surface and the

forces which are exercised on the fluid by any solid bodies which may be inside of the control
surface. If we call the latter P, we obtu_n the equation

zP_=ff p.cos (,, s). dS _-p ffv,v,dS (14)

for the s component of thc momentum theorem. The surface integrals are to be taken over the
entire closed control surface. The impulse integral can be limited to the exit side, if for every

velocity v_ on that side the velocity v_' is known with which the same particle arrives at the
approach side. Then in equation (13) dJ is to be replaced by

dm
dJ- dJ'= (v_-v/) dt =pdSv, (v,-v,') (13a)

The applications given in Part II will furnish illustrations of the theorem.

II
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PART II.

APPLICATIONS.
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length, i. c.f(_L

A. DISTRIBUTION OF PRESSURE ON AIRSHIP BODIES.

12. The first: application of hy(lrod_mamical theory to t)e tested by experiment in the

GStlingen Laboratory referred to the distribution of pressure over the surface of models of

airships. We can construct: nlathematically the flow for any number of varieties of sectional

forms of bodies ()f revCution of this kind if we place along an axis parallel with the direction

of the air current any suitable distribution of sources and sinks, taking care that the total

strength of the sources and sinks are the same. According to the intensity of the uniform

motion which is superimposed upon the flow from the sources, we obtain from the same system

of sources and sinks bodies of different thicknesses. In order to obtain the smoothest possible

shapes, the sources and sinks arc generally distributed eontin-

I uously along the axis, although single-point sources are allowable.

in the case of continuously distributed'_ources and sinks the

method of procedure is t)liefly this: The ahseissas of the single

sources are (tenoted 1)y _, the intensity of the source per unit of

length by f(}), in which positive values off(() denote sources, nega-

tive values sinks. The condition that makes the stream from the

sources self-contained is expressed 1)y the equation

,][lj.(_) d_ - o.

By simply adding the potentials due to the single elementary

sources f(}) d}, i. e., in this ease by integrating them, the total flow due to the sources will he

given by the potential defined by the following formula

1 t 't ./(})d} (15)

I

ept(x,y) = -4r, ---r

in which r= f(,_2():+f, and y is the perpendicular distance from the axis of the point for

which the potential is calculated, x is the abscissa along the axis measured from the same

origin as ,_. (See tig. 8.) There must be added to this potential that duc .to the uniform flow

with the velocity V, _-iz, % _ Vx. The total potential is then ¢,- oo_.+ q_:; and therefore the veloe-

_3_I_t 0ep 0ep,
0¢ = V+ and the sidewise (radial) velocity is v= O_t Oyity parallel to the axis is u= Oz Ox . =

In order to calculate the streamlines one could perform an integration of the direction

given by u and v. These lines are obtained more convenicntly, in this case also, by means of

the strcam function. (See see. 10.) In the ease of tlow symmetrical with reference to the axis,

such as is here discussed, one can take as stream function the quantiiy of ttuid flowing inside

the circle drawn through the point, x, y in a phme perpendicular to the axis and having its center

172
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on the axis. The amount of fluid delivered by tile sources which lie up the stream is purposely
deducted from this. It is not diftlcult to see that all points of tile X-I" plane, through whose
para!l_el circles the same ammmt of tluid flows per second--after deduction of the sources--
must lie on one and the same streamline, for evidently there is no flow, either in or out, through
the surface formed by the streamlines drawn through the points of any one parallel circle
(since the flow is along the surface) ; therefore the quantity of fluid flowing within this surface is

constant, so far as it is not increased hy the sources. From the meaning of tlle stream flmction,
to determine which the veh)city must be integrated over a surface, it follows that the stream
function of a flow due to two or nlorc causes is at every point the sum of the stream fcunctions

of the sever'd partial flows. For a continuous distribution of sources therefore the stream
function ¢ is obtained hy an integration exactly as was the potential. According to our
premise the surface of tim body is designated staidly by the value ¢=o. The fornnllas are
obtained as follows:

The tlow from a simple source through a circle passing through a point lying to the right of

the source is, writing r= _ T j,

_'_, t'yqx = Qx ['y?id?/= Q ('___ z
._,o. \+ :.]

Front this, in acc()r(hmce with what has been said the quantity Q must be subtracted so that
i

+=+,_+=_ ;) (16)

For points lying to the left of the source we obtain from the integral

+=
which coincides with formula (16); this hohls, then, everywhere.

For the assumed continuous distribution of sources we olitain

l 'l

,F =_,2j:)(,)(l+XT')d, (17)

in which r = _/(x'E)2+ y2. To this stream function of the sources nmst now be added that due

to tile paral 1_1 flow % = l"r._? (18)

Putting tile total stream function % 5 % ='_ cqu.d to zero, gives the equation of the surfa('e

of the body around which the tlow takes phtce. Putting % + % = C gives any other streamline.
It is evident that, with the same distrihuthm of sources u whol_ group
of body surfaces can be obtained, depcmling upon the choice of the ratio _,.. / j

of the in.tensity of the sources to the strength of the parallel flow.
The determination is best made practically by graphical methods, for

"instance, hy laying ()If the curves x=const, in a system of coordinates -t
consisting of y and -_I,, which can be obtained at once from a calculation

/

by tables for the stream function ,t,,. If we intersect these curves by

parabolas correspon(ling to the equation +-,V= l."r?/_- C, we obtain at +-_.// _Yonce a contour (for C=o) or some external or internal streamline (for _-
/

C>o or C< o). The parabola may be drawn upon transparent paper, and vm. 9.-'n:,. c...... , ,,_(,r,,_

then by displacing the parabola ahmg the T axis we can at once obtain ditT_c_t ,,_1_ of ,=
(+l)ll_[ +

from figure 9 the values o[" y corresponding to arty x.
In this manner a former colleague of mine, who unfortunately fell immediately at the

beginning of the war, Dr. G. Fuhrmann, calculated the shapes of bodies corresponding to a
series of source distributions, and on the one hand tie determined the distribution of pressure
over the surflwc (if these bodies by means of the Bernouilli equation (see scc. 4)

p=po+_{ V _- (u'_+v_)} _ (19)

I The velocities u alld t_ lnav I)e obtained from till! ])(llCllti_ll) |l!lt alSO from the stream ftlllC_tion ¢; _Sr u-,)Iy 0¢ all(l t>_-21¢y O_" .T /_y 0x "

13
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and on tile other tie constructed models according to these drawings and measured the pressure
distribution over them when placed in a wind tunnel. The agreement was altogether surpris-

ingly good, and this success gave us the stimulus to seek further relations between theoretical
hydronamics and practical aeronautics. The work of Fuhrmann was published in Jahr:b.
der Motorluftschiff-St, udien Gesellsch., Volume V, 1911-12 (Springer, Berlin), and contains

a large number of illustrations. Four of the models investigated are shown here. The upper
halves of figures 10 to 13 show the streamlines for a reference system at rest with reference to
tile undisturbed air, the lower halves the streamlines for a reference system attached to the
body. The distribution of the source intensities is indicated on the axis. The pressure dis-
tributions are shown in figures 14 to 17. The calculated pressure disfributions are indicated

by the lines which are drawn full, the individual observed pressures by tiny circles. _
It is seen that the agreement is very complete; at the rear end, however, there appears a

characteristic deviation in all cases, since the theoretical pressure distribution reaches the full
dynamicld pressure at the point where the [tow reunites again, while actually this rise in pres-
sure, owing to the influcnce of the layer of air retarded by friction, remains close to the surface.

As is well known there is no resistance for the theoretical flow in a nonviscous fluid. The

actual drag consists of two [)arts, one resulting from all the normal forces (pressures) acting
on the surface of the body, the other from all the tangential forces (friction). The pressure
resistance, which in this case can be obtained by integration .f the pressure distribution over
the surface of the body, arises in the main from the deviation mentioned at the rear end, and

is, as is known, very small. Fuhrmann's calculations gave for these resistances a coefllcient,
with reference to the volume of the body, as shown in the following table:"

._J,,_ol............................................. ii i 1 11 HI iv

kl ....................................................... _ _ 0,0170 0.0123 0. 0131 0.0145
!

This coefficient is obtained from the following formula:

Drag w_ =/:i U_/" ff

where U designates the volume and q the dynamical pressure.
The total resistance (drag) was obtained for the four models by means of the balance;

the difference between the two quantities then furnishes the frictional resistance. The total
drag coefficients were: "

1 I
k ........................................................ = 0. 03t0 o. 0220 0. 0246 0. 0248 i

With greater values of VL than were then available for us, the resistance coefficients

become nearly 30 per cent smaller. For purposes of comparison with other cases it may be
mentioned that the "maximum section" was about 2/5 of U ';3. The surface was about seven

times U:._3; from which can be deduced that the total resistance of the good models was not
greater than the friction of a plane surface having the same area. The theoretical theorem
that in the ideal fluid the resistance is zero receives in this a brilliant confirmation by experiment.

B. THEORY OF LIFT.

13. The phenomena which give rise to the lift of an aerofoil may be studied in the simplest
manner in the case of uniplanar motion. (See sec. 10.) Such a uniplanar flow would be ex-

pected obviously in the case that the wing was unlimited at the sides, therefore was "infinitely

z In the wind tunnel there was a small pressure drop in the direction of its length. In order to eliminate the effect of this, the pressures toward

th e fore had to be diminished somewhat and those aft somewhat increased.

z Alter deduction of the horizot_tal buoyancy.

14



APPI,ICATIoNs OF MO/)EIIN tlYDRODYNAI%[ICS TO AERONAUTICS.

Flo. !0.

FIG. 11.

FIG. 12.

FIG. 13.

Four airship models as dorived by/"uhrtlaatln by conlbiaation of sl)urces and uaiform flow. l)istribiitioll o/'sources indicated on axis. Upper half:

S_reamlines relative to undistt rbed air. Lower half: Streamlitles relalhe to airship.

-!- to v 2
2 I

! r ' ' -- _ i

pV 2
2

FIG. 1¢,

Flo. lg.

Pressure dlstribtlCloa over airships of llgllros I0 to 13.
FIG. 17.

Full lines represent calculated values; small circles, points as found by observatlolx in a
wind-tunneÁ,
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long," and throughout exhibite(l the same l)rofile an,t the sam(' angle of attack. In this case all
the sections will 1)e alike in all respects and each one can be considered as a plane of symmetry.
The infinitely long wing plays an important part therefor_ in t he considerations of the theoretical
student. It is not pqssihle to realize it. in free air, art,[ marked deviations from the infinitely
hmg wing are shown even with very long wings, e. g., those h:tving an aspect ratio of 1 : 10. In
laboratories, however, the infinitely long wing, or uniplanar tlow, may be secured with good

approximation, if a wing having a constant profile is placed between plane walls in a wind
tunnel, the walls running the full height of the air stream, in this case the wing must extend

ch)se to the walls; there must be m) gap through which a sensible amount of air can flow. We will
now discuss such experiments, and first we shall state the funda-

.""., mental theory of uniplanar ttow.

Since, as explained in section 4, in a previously undisturbed
tluid th/w, the sum of the static and dynamic pressures is con-

- _"_' - I stant: p+ I:2=const., in order to i)roduce lift, for which the

........ pressure below the surface must be increased and that above

diminished, such arrangements must be made as will diminish
the velocity below the wing and increase it above. The other
inethod of producing such i)ressure differences, namely, by

Fro.lS.--necluction,)f the I,Tuttaformula causing a vortex region above the surface placed h;c it kite
uniol ...... fl ............ l in!init+',,i,,_, oblique to the wind, hy which a suction is produced, does not

come under discussion in practical aeronautics ()wing to the great resistance it sets up. La_chester
has ah-eady called attention to the fact that this lifting current around the wing arises if there is

superimposed upon a simple potential flow a circulating llow which on the pressure side runs
against the main current and on the sucti,)n side with it. Kutta (1902) and Joukowski (1906)

proved, independently of each other, the theorem that the lift for the length 1of the wing is

A = pl' Vl (20)

in which F is the circulation of the superimposed flow. It may be concluded from this formula
that in a steady ttuid tioga;lift is not possible unless there is motion giving rise to a circulation.

In uniplanar tlow in an ideal thfid this lift does not entail

any drag.

The proof of the Kutta-Joukowski formula is generally
deduced by applying the momentum theorem to a circular
cylinder of large r_t,lius wh(ise axis is the medial line of the

wing. The circulatory motion, which could be ohtaine(l
numerically close to the wing only hy elaborate mathematical

processes, is reduced at a great distance from the wing to a __
motion which agrees exactly with the tt_)w around it rectilinear
vortex filament (see see. S), in which, therefore, the single _,,; ,,, t,,if,, .......... ir...... n,,,, ..........,,'it-
particles (lescribe eonc_,nt,'ie circles. The vdlocity around a cL,l,,reytmdt_r.

1'
circle of radius R is, ttmn, v=27rR" For an clement of surface 1. RdO (see fig. 18) the normal

component of the velocity is V cos 0, the mass ttowing through per second dm= plR V cos OdO.
If we wish to apply the momentum theorem for the vertical components, i. e., those perpen-
dicular to the direction of V, then this component of the velocity through the element of surface

must be taken. This, obviously, is v cos 0, taken positive if directed downward; the total

impulse, then, is

J = f v eos odm= oll_ l'Vf2o'_COS:OdO.

The integral equals _r, and therefore introducing the value of y

1
'1=2 0 Vl'/.

16
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Since the resulting impulse is directed downward (tile upward velocity in front of the wing is
changed into a downward one behind the wing), this means that the reaction of the fluid against
the wing is a lift of the wing upward. The "_mount of the impulse furnishes, as is seen by re-

ferring to formula (20), only half the lift. Tim other half comes from the pressure differences
on the control surfaces. Since, for a sufficiently large R, v can always be considered small eom-

P

pared with V, neglecting 2 v", the pressure p is given, according to the ernouilli equation, by

P=P°+2 I'p '*_-2,P!(l_+vsin02÷-v _'eos 20}_po-t,V sin0.

A component of this, obtained by multiplying by sin 0, acts vertically on the surface element
1RdO• The resulting force D is, then

I) = plR l.'v[" sin -+OdO.
Ll u

This integral also equals r, so that here also
1

D= 2 0VF/

its <lireetion is vertically up. The total lift, then, is

A =J+D=pVI'.

14. For the more accurate analysis of the th)w around wings the complex functions (see

sec. 10) have been applied with great success, following the procedure of Kutta. Very different

-/ /I / _ 1 .....,.._ _

-/j/JX /. \ "_. "

FIG. 20,--Uniplanar flow arotlTl(l circular FI,L 2I,--Snperposition of two prect,<llng

cylinder considered as a eolunl_lar vortex flows.

of slrength P.

methods have been used. llere we shall calculate only one specially simple case, in which the

flow will be deduced first around a circular cylinder and then calculated for a wing profile by ,
transformation of the circular cylinder and its flow, using complex functions.

The flow around a circular cylinder has long been known. If the coordinates in the plane
of the circle are p and <],and if we write p + iq-t, the potential and stream functions for the

ordinary symmetrical flow around the circular cylinder are given by the very simple fornmla

_I)l+i%=V t+ _ (21)

It is easily seen by passing to polar eoordinatcs that, for r= a, ¢_ = o, and that therefore the
circle of radius a is a streamline. Further, for the p axis, ¢_ =o, i. e., this is also a streamline•
The whole flow is that shown in figure 19. To this ttow must be added the circulation flow

expressed by the formula

• _+ i% = i1' log t " (22)
27r

which, as shown in figure 20, is simply a flow in concentric circles with the velocity F The
2rrr'

combination of the two flows, i. e., the flow for the sum of the expressions in equations (21)
and (22), is shown in figure 21. It is seen that the rest point is moved down an amount de.
By a suitable choice of the circulation this can be brought to any desired point.

7-(°:) (°;)6t+ r+ cos 0+i r-- sinO ailogt=-O+ilogr.

20167--23--12
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We nmst m)w discuss the transformation of this flow to a wing profile. For this purpose

manifold means are possible. The simplest is furnished by a transformation according to the

equation
b_

z=z+iy=t+f.

By this the circle of diameter AB = 2b in the t plane (as we shall for brevity's sake call the p, q

plane) is transformed into a straight line A' B' of the length 4b along the X axis, and coneen-

+

...; //' . . \

Conformal trauslormation of z plane into l piano by z=t r t

FIG. 23.

tric circles around the former become ellipses, the radii become hyperbolas. All the ellipses

and hyperbolas have their foci at the ends of the straight line, this forming a confocal system.

Figures 22 and 23 illustrate the transformation. It may be mentioned, in addition, that the

interior of the circle in figure 22 corresponds to a continuation of the meshwork in figure 23

through the slit A' B', whose form agrees with the meshwork as drawn. Any circle througil

the points AB is thereby transformed into an are of

a circle passed over twice, having an angle subtended

at the center equal to 4/_.

Many different results may now be obtained by

means of this mapping, according to the position

which the circle, around which the flow takes place

according to equations (21) and (22), bears to the di-

ameter AB of the circle of figure 22. If the diameter

AB is made to coincide with any oblique diameter of

the circular section of the cylinder, we obtain a flow

around an oblique plate whose angle of attack coin-

cides with the inclination of the line AB. If the di-
FIG. 24.--Illustrations ol Joukowski sections.

ameter AB is selected somewhat smaller, so that both points lie inside the circle symmetrically

on the diameter, the flow around ellipses is obtained. If, however, the diameter AB coincides

with a chord of the circle around which the original flow was, which, for example, may lie below

the center, the flow around a curved plate forming an arc of a circle is obtained. By selection

of various points in the interior of the original circle forms of diverse shapes are obtained. The

recognition of the fact that among these forms very beautiful winglikc profiles may be found we

18
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owe to Joukowski. These are obtained if the point B is selected on tile boundary of the original
circle and tile point.,1 inside, and somewhat below the diameter through the point B. Figure
24 gives illustrations of such Joukowski profiles.

In order that the ttow may be like the actual one, in the cases mentioned the circulation
must always be so chosen that the rear rest
point coincides with tile point B, or, re-
spectively, with the point on the original
circle which lies nearest this point. ]n

this case there will be, after mapping on
the z plane, a smooth flow away from the
trailing edge, as is observed in practice. It
is therefore seen that the circulation must

be taken greater according as the angle of
attack is greater, which agrees with the ob-
servation that the lift increases with increas-

ing angle of attack.
The transformation of the flows shown

in figures 19 to 21 into wing profiles gives

f :lh

II," _.25 -Lr_/_for _ _ ]ofsinlp]e[olenlialflov,- figurclg.

illustrations of streamlines as shown in figures 25 to 27--figure 25, simple potential flow;
figure 26, circulation itow; figure 27, the actual flow around a wing obtained by superposition
of the two previous/tows.

We are, accordingly, by the help of such constructions, in the position of being able to

F](;. 2,k "['r_ln_forHlntio:] ,)f cirtmlat,)rv flow I]gllr_t 2i).

calculate the velocity at every point in the
neight)orhood of the wing profile, and with it
the pressure. In particular, the distribution
of pressure over the wing itself may he cal-
culated.

My assistant, Dr. A. Betz, in the year
1914 worked out the pressure distribution for

a Joukowski wing profile, for a series of angles
of att_ck, and then in a wind tunnel meas-

ured the pressure distril)ution on a hollow

model of such a wing made of sheet metal,
side walls of the height of the tunnel being
introduced so as to secure uniplanar tlow

The results of the measurements agreed in a very satisfactory manner with the calculations,
only--as could be well explained as due to friction the actual circulation was always slightly
less than that calculated for the same angle of attack. If the pressure distributions would
be compared, not for the same angles of
attack, hut for the same amouht of circu-

lation, the agreement would he noticeably
better. The pressure distributions 'are
shown in figures 28 to 30, in which again

the full curves correspond to the measure-
ments and the dashes to the calculated

pressures. Lift and drag for the. wing
were also obtained by the wind-tunnel bal-
ance. In order to do this, the middle part
of the wing was isolated from the side parts,
which were fastened to the wails of the tun-

ncl by carefully designed labyrinths, so that
within a small range it could move without

FIO. 27.--Transformatlor_ oI'superposition of tile two flow:i, llgnre 21.

friction. The result of the experiment is shown in figure 31. The theoretical drag is zero, that
obtained by measurement is _,ery small for that region where the wing is "good," but sensibly
larger for too large and too small angles of attack. The lift is correspondingly in agreement
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with the theoretical value in the good region, only everywhere somewhat less. The deviations
of drag as well as of lift are to be explained by tile influence of the viscosity of the fluid. The

agreement on the whole is as good as can be expected from a theory which neglects completely
the viscosity.

For the connection between the angle of incidence a and the circulation which results from
the condition discussed above calculations give the following result for tile lift:

l:lG. 2S.

C_=3 °
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(1) Thc Kutta theory gives for the thin plane
plate the formula

A - bt.Trp _': sin _ (23)

The lift coefficient (_ is defined by the equation

(, A 1 V:
a- [,)j where _, = '2 p

and therefore

(_, = 2rr sin _ (24)

(2) For the circularly curved plates having an
angle of arc 4i_ subtended at the center (see figure 23)

we have, according to Kutta, if a is the angle of
attack of the chord,

C,, = 2_r sin (_ +f_) (25)
COS

which, for small curvatures, becomes 2_ sin (a+_);

this can be expressed by saying that tile lift of the
circularly curved plate is the same as that of a plane
wttich touches the former at a point three-fourths of

the distance around the arc fr'om its leading edge.
For the Joukowski profiles and for others the

formulas are less simple, v. Mises showed in 1917
that the increase of (_, with the angle of attack, i. e.,

dC_,
da is greater for all other profiles than for the fiat

plate, and is the greater tim thicker the profile. But

the differences are not marked for the protiles occur-
ring in practice.

The movement of the center of pressure has
also been investigated theoretically. With the

i)lane plate, in the region of small angles itahvays
lies at one-fourth of thc width of the plate; with
circularly curved thin phttes its position for small

angles is given by the following law:

t tan a
xo-- - 4 tan a +tan-fl (26)

Pressuredistribution over a Jtmkowski wing, differellt angles (ff .

attack. Fua linesgiveresults of uind-t,_nncltests: dashed in which t is tile chord of the plate, 'rod Xo is the dis-
lme,,e_l_,l_tedw,,es, tance measured from tile center of the l)late. Tile

fact that the movement of the center of pressure in the case of "good" angles of attack of the
profiles agrees with theory is proved by the agreement of the a('tual pressure distribution witlt
that calculated. In the case of thin plates a less satisfactory agreement as rcst>e('ts pressure
distribution is to be expected because with them in pr,i(qice there is a formation of vortices at

the sharp leading edges, while theory must assume a smooth flow at this edge.

15. That a circulatory motion is essential for the production of lift. of an qerofoil is defi-

nitely established. Tlle question then is how to reconcile this fact with the proposition that

2O
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the circulation around a tluid line in a nonviscous fluid remains constant. If, before the motion
hegins, we draw a closed line around the wing, then so long as everything is at rest, the circula-
tion certainly is zero. Even when the motion begins, it can not change for this line. The ex-

planation of why, in spite of this, the wing gains circulation is this: At the first moment of the
motion there is still nr) circulation present, the motion takes place approximately according to

figure 25, there is a tlow at high velocity around the
trailing edge. (See sec. 10.) This motion can not, how-

ever, continue; there is instantly formed at the trailing
edge 't vortex of increasing intensity, which, in accord_
ance with the Helmholtz theorem that the vortex is

always made up of the sanle tluid partMes, remains with
the tluid as it passes on. (See tit. 32.) The circulation
around the wing and vortex, taken together, remain::,

equ'd to zero; there remains then around the wing a cir-
culation equal 'rod opposite to th,it of the vortex which
has gone off with the current. Therefore vortices will
be given off until the circulation around the wing is of
such a strength as to make the fluid flow off smoothly
from the trailing edge. If hy some alteration of the

angle of att'tek the condition for smooth flow is'dis-
turhed, vortices are again given off until the circulation

reaches its new value. These phenomena are com-
pleted in a comparatively short distance, so the full lift
is developed very quickly.

In the pictures of flow around a wing, e. g., figure 27,
one sees that the air in front of the wing flows upward
against the reaction of the lift. The consideration of

momentum has shown that half of the impulse is due to
the oncoming ascending current. This fact needs some
further explanation. The hest answer is that given by

I_anchester, 7who shows that for the production of lift
the air mass at 'my time below the wing must he given

/

- --I -_/2

: t¸-i

i i o4

i I
IIG. 31.--V:fl!lCS of lift _lnd drag coell ¢icntsof a Iouko_ ski

win_ :is obtained in will(l-tunnel teM_ :trill by tho_Jry.

an acceleration downward. The question lie asks is: What kind of a inotion arises if for a short
time the air below the wing is accelerated downward, then the wing is moved forward a bit
wit h()ut pressut'e, then the 'fir is again aceeler'tted, and so on 9. The space distribution of the

accelerations is known for the case of a phme plate, infinitely extended at the sides, accelerated
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edge.

from rest;, the pattern of the accelera-
tion direction is given in figure 33. It
is seen that above and below the plate
the acceleration is downward, in front

of and behind the plate it is upward

opposite to the acceleration of the
plate, since the air is escaping from
the plate. Lanchcster asks now ahout
the velocities which arise from the

original uniform velocity relative to
the plate owing to the fact that the

plate, while it gives rise to the accelerations as shown in figure 33, gradually comes nearer the
air partMe considered, passes by it, and finally again moves forw.wd away from it. The pic-

ture of the velocities and streamlines which lmnchester obtained in this way and reproduced
in his book was, in(lependently of him, calculated exactly by Kutta. It is reproduced in figure
34. It is seen that as the result of the upward accelerations of'the tlow away from the wing

; Avrodyll_r_lJ('_ [, § 110 II_;.
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there is an upward velocity in front" of tile plate, a uniform downward acceleration at the plate
itself due to which the upward velocity is changed into a downward one, and finally behind the
plate a gradual decrease of the downward velocity on account of the acceleration upward.

C. THE FINITE WING.

16. It has been known for a long time that the aspect ratio of an aerofoil had a great effect
on its properties. One could therefore have expected that, on account of the vanishing of
pressure at the side edges, the intensity of the lift must decrease toward the edge, so that its

average wdue for the same angle of attack must be smaller for small values

@_ of the aspect ratio than for large ones. But the observed influence of aspectI ratios is sensibly greater than could be explained in this way. We must
therefore investigate whether an explanation of this phenomenon can he found,

F-,o.:_:_.-_,,o_tio, if we apply to the finite aerofoil in some proper manner the results which are
_i,_........... _ _" known t.o hoht for uniplanar flow.
infinitely long rio!

p,:,_, _,c¢.,_,_,,_,l:,t It is easily seen that vortices in the free fluid must here be taken into
ri*zhl an_le to i_s _ur
r_-e. account. For it is certain that circulation is present around the middle of

the wing because no lift is possit)le_ without circulation. If a closed line

drawn around the middle of the wing, aroun(l which, therefore, there is circulation, is displaced
sideways over the end of a wing, it will certainly no longer show circulation here when it is

beyond the wing. From the theorem that the circulation along a closed line only changes
if it cuts vortex filaments, and that the amount of the change of the circulation equals the
sum of the strengths of the vortex filaments cut (see sec. 8), we must conclude that from each

half of a wing vortex fil,Hnents whose strengths add up to F must proceed, which are concen-

trated mainly near the cuds of the wing. According to the llchn- _- _ _ ......
holtz theorem we know further that every vortex produced in the ..... - .... _
fluid continues to move with the same tluid particles. We may ___
look upon the velocities produced by the wing as small compared __----_----_

with the flight velocity 1.",so that as an approximation we may
assume that the vortices move away from the wing t)aekwards
with the rectilinear velocity V. (If it is wished, we can also im-

prove the considerations based upon such an assumption if the Flc. 34.--_t....... li ........... d :m infinitely
lon_ ('ur_ od plale.

motion of the vortices of themselves relative t.() the air is taken into

account. This will, however, be seen to be unnecessary for practical applications of the theory.)
In order now to obtain the simplest possible scheme, we shall assume that the lift is uni-

formly distributed over the wing; then the total circulation will arise only at the ends, and

continue rearwards as free vortices. The velocity field of an infinitely long wing, as we saw,
was the same at great distances as that. of a rectilinear vortex
filament inste,ld of the wing. We shall assume that the corra-

l sponding statement holds for the finite wing. We thus obtain,for the velodity field around a finite wing, a picture which is

somewhat crude it is true, if we take for it the velocity distri-
bution due to a vortex filament of corresponding shape.

It may be mentioned here that, on account of there being

. the same laws for the yah)city field of a vortex filament and the
magnetic field of an electric current (see see. 8)', the velocity

FIG, 35.-- k finite wing, considered as due to

vortiees replaeing the uing. near a finite wing can also be investigated numerically by cal-
culating the direction and intensity of the magnetic field pro-

duced near an electrical conductor shaped as shown in figure 35 due to an electrical current
flowing in it.

The principles for the calculation of this velocity iield have been stated in section 8; the

total velocity is made up out. of three partial veloeit.ies which are caused by the three rectilinear
vortex portions. As is seen without difficulty, for the region between the vortices the flow is
downward, outside it is upward.
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17. This approximation theorem is specially convenient if the conditions at great distances
from the wing are treated. With its help we can explain how the weight of an airplane is
transferred to the ground. In order to make the flow satisfy the condition that at the ground

components of velocity normal to it are impossible, we apply a concept taken from other
branches of physics and superimpose the condition of an image of the airplane, taking the earth
as the mirror. On account of syinmetry, then, all velocity components normal to the earth's
surface will vanish. If we use as our system of coordinates one attached to the airplane, we
have then the case of stationary motion. If we take the X axis in the direction of the span

of the wing, the Y axis horizontal in tile direction of flight and the Z axis vertically down,
and if u, v, w are the components of the additional velocity due to the vortices, then calling

po the undisturbed pressure and p' the pres-
sure difference from po, and neglecting the
weight of the air, Bernouilli's equation gives us

po+p'+ P lug+ (v- V)_+wq=po+ p V _2 2

If this is expanded and if tl"_,v :, and w 2 arc
neglected as being small of a higher order, there
remains the simp!e equation

p' = p Vv (27)

For the determination of the pressure dis-
tribution on the ground we must now calculate
the value of v. Let us assume the vortices

run off the wing in an cxactly horizontal direc-
tion (actually, their path inclines downward

slightly), in which case they do not contribute
to v. There remains then only the "transverse

vortex" of the length l (effective span) and
the circulation F. We will assume timt the

span of the wing is small in comparison with
the distance h of the airplane from the ground.
In that case we can treat the transverse vortex

as if it were a single vortex element. We ob-
tain, then--see figure 36--at a point A, with

1_JJ

• " lh
"•_ • b

p

i
, j

f I

Fro. 3¢_.--hpplication of method of images to airplane flying near the

gr(,tlnd.

the coordinates x and y, a velocity perpendicular to the plane ABF, of the amount

z sin
v, = F _ 4 _r R 2

The image of the airplan'e furnishes an equal amount perpendicular to the plane ABF'
If f_ is the angle between the plane ABF and the XY plane, then the actual velocity at the

ground, as far as it is due to the transverse vortex, will be the resultant of v_ and v2. It is there-

fore v = 2V, sin _, or, if we write sin _ = R' sin _= , (see fig. 36)

r l h (28)
v=2 7r R 3

If we take into account the fact that, according to the Kutta-Joukowski formula (20),

p r VI=A, equations (27) and (28) lead to the relation

A h (29)
P'=2 7r R _

If this is integrated over the whole infinite ground surface, it is seen that the resultant

force due to the pressures on the ground has exactly the amount A. It is thus proved that the
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pressure distribution due t:o the circulation motion transfers to the ground exactly the weigh
of the airplane. The distribution of the pressure, which according to formula (29) is axially
symmetrical with reference to the foot of the vertical line drawn from the airplane, is shown in

A
figure 37. Thc pressure maximum is pl= 2 _ h:. Its amount, even for low heights of flight, is

very small, since the surface over which the pressure is distributed is very large.

1S. Applications of an entirely different kind may be made of the velocity field which belongs
to the vortex of figure 35. For instance, an estimate may be made as to the magnitude of the
downward velocity component at any point of the tail surfaces, and in. tiffs manner the influence

of the wings .upon the tail surfaces may be calculated. If in accordance with tile Kutta-

Joukowski formula the lift is written A=pFVI, in which, taking account of the fact that a

]' I(;. :¢7.--Distribution of pressure on ground eauved by _,irtflane flying near it.

portion of the vortices flow off within the ends of the wing, l, can be taken somewhat less than
the actual span b, then at a distance d, behind the wing, the velocity component downward is

I'tl(rr 2_ l+d)÷d/_2 t,=_.lI" (1__it),<t. (30)
w=2

4

in which a= + d2.

If the flight velocity is V, this gives for the inclination of the downward sloping air-current

tan _= V" We proved this relation in the year 1911 and found an approximate agreement

with observation.

The principle made use of above has been applied with profit to the calculation of the
influence of one wing of a biplane upon the other wing and has given a method for the calcula-
tion of the properties of a biplane from the properties of a single wing as found by experiments.
The fundamental idea, which is always applied in such calculati<>ns, is that, owing to the vortex
system of one wing, the velocity field near the wing is disturt)ed, and it is assumed that a wing

experiences the same lift as in an undisturbed air stredm if it cuts the streamlines of the flow
disturbed by the other wing in tile same manner as a nlonoplane wing cuts tile straight stream-
lines of the undisturbed flow. As is easily seen, the wing profile must in general be slightly
turned and its curvature slightly altered, as is shown i.n figures 38 and 39. By the rotation of

the wing the direction of the resultant air force acting on it is turned through an equal angle.
If the magnitude of the velocity as well as its direction is also changed, this must be expressed
by a corresponding change in the resultant air force.
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As an illustration we will treat briefly the case of a biplane without stagger. The most

imt)ortant component of the disturbance velocity w is again the vertical one: in the phme of

the mean lift lines of the t)iphme it is affected only t)y the pair of vortiee_ running off the wings,

since t.]m transverse vortex of one wing causes only an increase (or decrease) of the velocity of

flow at the other wing. We are concerned here only with the calculation of that downward

disturbance velocity due 1o tile vortices from lhe wing not un(ler investigation, since the other

vortex system is present, with the monol)lane and its influence has ah'eady been taken into

account in the experilllents oil a monophme.

The total veh)city title Ioa portion of a vortex proceeding to infinity in one direction, in

the phtne l)erl)endi(:ular 1o the vortex at its end, is, as may be deduced easily from the formula

in section S, exactly half of lhc eorresl)onding velocity in the neiglfl)orhood of a rectilinear

vortex tilament extending to inlinity in both directions.

fact that two vortex tilan_ents, each extend-

ing to infinity in only one direction--but

oppositely in the two cases -form, if com-

bined, a single filament exlending t.o intinity

in both directions. T]w total velocity

caused at the point P t)y the vortex A,

r, , where r= x"a_4ha i its
see figure 40, is 47rr

vertical component is

I" t X
w*=47rr" r

The vertical component due to the

vortex B is

l't [x -- x
w[_=4_rr' " r'

where r' = w!(l= - x): + h:.

Therefore the vertical component due

to t)oth vortices is

l' /x l_-x'x

If we assunle that the lift is uniformly

distributed over the effective span l=, which

again we shall take as somewhat less than

the actual span, then, since every element of

the wing must be turned through the angle
"//)

_o according to the formula "tan _= g, the

direction of the air force must be turned

also, which means a negligible change in

the lift, trot an increase in the drag of this

This can also t)e easily seen from the

tA

]" IG. 3¢, .

/

FIe,. 39.

Influence of one wing of a biplane upon the other; rotatian of wing profile,

alteration of its eurv_.ture.

wing which must be taken into account.

It is essential then in this calculation that we pass from a condition for a monoplane to

one in which the wing when part of a biplane has the same lift as when considered as a mono-

plane. The angle of attack for which this condition will arise can be estimated afterwards

from the average of the angles _o.

19. The contribution of vortex A to the increase of the drag of the upper wing in figure 40

is evidently
h /_

cv:& A= r, _xdx_A: r r_
W'=JoV 12dx= l= 47rl, Jor _ - la 4_rV l°g r,
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The contribution of vortex B is, by symmetry, the same. In accordance with equation (20),

we can put F= At1,p V and thus obtain for the increase of the drag of the upper wing

w _&4__ !og r_/r,
z- 1112 2rpV 2 (32)

By the symbol W,2 is meant that it is the drag produced by wing 1 upon wing 2. One can
convince himself easily that the drag ll_, which wing 2 produces upon wing 1 has the same
magnitude. Therefore the total increase of drag due to the fact that two monoplanes which
produce the lifts A, and A 2 are combined to form a biplane, the two lifts remaining unchanged
(the angles of inei(lence of course being changed), is

W,+ IV:t=21V,.= AtA: logr2 (33)
" " 2rll" 12q 1',

1
in which, as always q=2 o VL) s

Upon the change in the magnitude of tile velocity, which in accordance with the approxi-
mation used depends only upon the disturbance velocity v in the direction of flight, only the

I

FIG. KJ.--Velocity at a point P due to the tip
vortices.

transverse vortex of tile other wing has an influence. For

any point this influence, according to our formula, is given by

F/x l-x\
_'=4_t_(,_+ r') (34)

in which r and r t have the same meaning as before. The

upper wing experiences due to the lower an increase in veloc-
it)', the lower one experiences due to the upper a decrease in
velocity, to which correspond, respectively, an increase or a

decrease in lift as shown by the usual formula_. If we wish to
keep the lifts unchanged, as required m the treatment given

above, it is necessary to (:'hange the angles of attack correspondingly.
The effective change in the curvature 9 of the wing protile will, for simplicity's sake, be

discussed here only for the medial plane of the biplane, i. e., for x=_- It is obtained in the

simplest manner by differentiating the angle of inclination of the air current disturbed by the
w

other wing, which is, remembering that tan _ = _;,

1_ d \ ldw
R=dy (tan ft)= Vdy (35)

Outside of the vertical plane, owing to the disturbing wing, three vortices contribute to
the magnitude of w. A side vortex contributes, at a point at the height h and the distance y

F' (1 - rY, ) ,in front of the transverse plane, a velocity v" perpendicular to r" of the amount 4_rr

and therefore its share of tv is

r,x( 1_ ?j\ r,z/ ;q,)w,=4rr: \ r") = _rrr:_ 1-

The transverse vortex contributes
F, l_ y

w_ = - 4rr "r"r'"

in which the meaning of/' and r'" may be seen from figure 41. The total w is, accordingly,

i_t,(1 Y Y
_' = 2W, + W2 4r_r_ -- r2 r, p

s The mutual action of two wings placed side by side can also be calculated from the considerations stated above, and results in a decrease of

the drag. This decrease Is of a similar kind to that which arises in the theory of a monoplane by an increase in the aspect ratio.

By change in curvature of the wing is meant that iI the flow were to be kept straight and the curvature changed, the lorc_s on ehe wi.ng would

be changed exactly as they are oa the actual wittg o_ving to the c3aange in the flow.--Tr.
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The differential of this with reference to ?/, for the value of y=o, is, since then r" _-r and
r It! _h

(dd/W)= FI,/I 1\

the curwture sought is, then, according to equation (35),

1 I" /,(1+1)R=,tTrI'r\r 2 td (36)

Calculations of the preceding nature were made in 1912 1)y my assistant, A. Betz, so as

to compare experimenls with monoplanes and biplanes and to study the influence of different

angles of attack and (tifl'erent degrees of stagger of the two wings of a biphme upon each other.

The influence upon the drag was not km)wn to us at 1hat time, and the calculation was carried

out so as to ohtain the changes in the lift due to tv, to v and to the curvature ()f the streamlines.

In this connection the c|lange of the lift of a monoplane wl)en tlying near the earth's surface

was also deduced, by calculating the inthlenee of tim "mirrored wing" exactly as was that of

the other wing of a biplane. All th_lt was necessary was to change some algebraic signs,

because the mirrored wing had negative lift. The theory of these

calculations was given hy Betz in the Z. F. M., 1914, page 253.

The results of the theory of Betz, from a more mo(lern

standpoint, su(:h as adopted here, were given in the Teeh-

nische Beriehte, wJlume 1, page 103 et seq. There one ean

tintt tile discussion requisite for the treatment of the most

general case of a hiphme h:tving different spans of the two

wings and with any stagger. In (he ease of great stagger

it appears, for example, that the forward wing is in 'm ascend-

ing air current caused by the rear wing; the latter is in an

intensified descending current due to the forward wing and the vortices tlowing off from it.

Corresponding to this, if the angle of attack is unchanged, the lift of the forward wing is

Drag
increased, and that of the rear one weakened; at the same time the ratio Lift experiences a

decrease for the forward wing and a marked increase for the rear one.

For a wing in the neight)orhood of the ground, owing to the influence of v there is a decrease

of lift, and conversely there is an increase of lift due to the inlluenee of w, provided the angle

Drag
of attack is kept constant but as the result an evident decrease in the ratio Lift " Owing to

this last it is seen why in the early clays of aeronautics many machines could fly only near the

ground and couhl not rise far fi'om it. Their low-powered engines were strong enough to over-

come the diminished drag near the ground but not that in free air.

D. THEORY OF THE MONOPLANE.

20. If we extend the principles, _yhieh up to this point have been applied to the influence

of one wing upon another, to the effect upon a single wing of its own vortices, it can be said in

advance that one wouht expect to find in that case effects similar to those shown in the influence

of one wing of a biplane upon the other, i. e., the existence of lift presupposes a descending

flow in the neighhorhood of the wing, owing to which the angle of attack is made greater and

the drag is increased, hoth the more so the closer to the middle the vortices flowing off at

the ends are, i. e., the smaller the aspect ratio is. One might propose to apply the theory pre-

viously given for biplanes by making in the formulas of this theory the gap equal to zero. Apart

from the fact that the formulas developed do not. hold for the immediate neighborhood of the

vortex-producing wing, but must be replaced by more accurate ones, this certainly is not the

proper path to follow, for, in the earlier tre'ttment, we have taken the undisturbed monoplane

as the object with which other cases are to be compared and have asked what drag, what change

in angle of attack, etc., are caused hy adding a second wing to this monoplane. To proceed

]"IG. 41.--Curvature of _ing-profile at

its middle ]mint due to velocities

e:msed by transverse and tip vortices.
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according to tile same method, we must seek for the theory of monoplanes another suitable
object of comparison. As such, the infinitely long wing will serve. Where the discussion

previously was about change of angle of attack, increase of drag, etc., we intend now to refer
these to the infinitely long wing as a starting point. Since in the theoretical nonviscous flow
the infinitely hmg wing experiences no drag, the total drag of such a wing in such a fluid nmst
be due to vortices amenable to our calculations, as the folh)wing treatment will show. In a

viscous fluid drag will arise for both wings; infinitely tong or not, which for those angles of
at tack for which the profile is said to he "good" is, according Io the results of experiment, of the
order of magnitude of the frictional resistance of a plane surface.

The carrying out of this problem is accompanied with greater diiIiculties than the calcula-
tion for a biphme as given. In order to ol)tain the necessary assistance for the solution of the

problem, we shall first he obliged to improve the accuracy of our picture of the vortex system.
The density of the lift (lift per unit length) is not constant over the whole span, but in

general falls off gradually from a maximum at the middle nearly to zero at the ends. In ac-
cordance with what has been proved, there, corresponds to this a circulation decreasing from
within outward. Therefore, according to the theorem that by the displacement of the closed
curve the circulation F can change only if a corresponding quantity of vortex filaments are cut,
we must assunle that vortex filaments proceed off from the trailing edge wherever F changes.

For a portion of tiffs edge of length dx the vortex strength is therefore to be written _ dx, an(l

FIG. 42.--Change iu shape of vortex ribbons at great distances behind the _'.ing.

hence per unit length of the
dF

edge is dz. These vortex fila-

ments flowing off, closely side
by side, form, taken as a whole,
a surface-like figure, which we
shall can a" vortex ribbon."

For an understanding of
this vortex ribbon we can also

approach the subject from an

entirely different side. Let us consider the flow in the innnediate neighborhood of the surface of
the wing. Since the excess in pressure below the wing and the depression above it must vanish

as one goes beyomt the side edges of the wing in any manner, there must be a fall in pressure neat-
these edges, which is directed outward on the h)wer side of the wing and inward on tile upper.
The oncoming ttow, under the action of this pressure drop, _hile it passes along the wing, will
receive on the lower side an additional component outward, on the upper side, one inward,
which does not vanish later. If we assume that 'tt the trailing edge the flow is completely

closed again, as is tile case in nonviseous flow, we will therefore have a difference in direction
between the upper and lower flow; the upper one has a relative velocity inward with reference
to the lower one, and this is perpendicular to the mean velocity, since on account of the Ber-

nouilli equation in the absence of a pressure difference between tile two layers the numerical
values of their velocities must be the same. This relative veh)city of the two tlows is exactly

tile result of the surface distribution of vortices mentioned above (as the vortex theoi2¢- proves,
a surface distribution of vortices always means "l discontinuity of velocity between the regions

lying on the two sides of the surface). The relative veh/city is the greater, the greater the side-
wise pressure drop, i. e., the greater the sidewise change in lift. The picture thus obtained

agrees in all respects with the former one.

21. The strengths of our vortex ribbon remain unchanged during the whole flight, yet
the separate parts of the ribbon influence each other_ and there takes place, somewhat as is

shown in figure 42, a gradual rolling up of the ribbon, as a (:loser examination proves. An
exact theoretical investigation of this phenomenon is not possible at this time; it can only be
said that the two halves of the vortex ribbon become concentrated more and more, and that

finally at great distances from the wing there remain a pair of vortices with rather weak cores.
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For the practical problem, which chiefly concerns us, namely, to study the reaction of the
vortices upon the wing, it is not necessary to know these changes going on at a great distance,
for the parts of the vortex system nearest the wing will exercise tile greatest influence. We
shall therefore not consider the gradual transformation of the vortex ribbon, and, in order to
make the matter quite simple, we slmll m,_ke the calculation as if all the vortex filaments were
running off behind in straight lines opposite to the direction of flight. It will be seen that,

with this assumption, the calculations may be carried out and that they furnish a theory of
the monophme which is very useful and capable of giving assistance in various ways.

If we wish to establish the method referred to with greater mathematical rigor, we can

proceed as follows: Since tile complete problem is to be developed taking into account all cir-
cumstances, we shall limit ourselves to the ease of a very small lift and shall systematically
carry through all calculations in such a manner that only the lowest power of the lift is retained,

all higher powers being neglected. The motion of the vortex ribbon itself is proportional 1o
the total circulation, therefore also proportional to the lift; it is therefore small if the lift is
small. If the velocities caused by the vortex ribl)on arc calculated, first for the ribbon in its
actual form, then for tim ribbon simplified in the manner mentioned, the difference for the two

distributions will be small compared with the values of the velocity, therefore small of the
second order, i. e., small as tile square of the circulation. We shall therefore neglect the differ-

enee. Considerations of this kind tire capable of deciding in every case what actions should be
taken into account and what ones may be neglected. By our simplifications we have therefore
made the problem linear, as a mathematician says, and by this fact we have made its solulion

possible. It must be considered a specially fortunate circumstance that, even with the greatest
values of the lift that ac_uMly occur with tile usual aspect, ratios, the independent motion of the

vortex ribbon is still fairly small, so that, in the sense of this theory, all lifts which arc met in
practice may still be regarded as small. For surfaces having large chords, as, for instance, a
square, this no longer hohls. In this case there are, in addition, other reasons which prove
that out" theory is no longer sufficiently accurate. This will be shown in the next parhgraph.

It has already been mentioned that the intinitcly long wing will serve as an object of com-

parison for the theory of the monoplane. We shall formulate this now more exactly by saying:
Every separate section of the wing of length dx shall bear the same relation to the modified flow

due to the vortex system as does a corresponding element of an infinitely long wing to the recti-
linear flow. The additional velocities caused by the vortex system vary from place to place
and also vary in the direction of the chord of the wing, so that again we have to do with an
influence of curvature. This influence is in practice not very great and will for the sake of
simplicity be neglected. This is specially allowable with wings whose chords are small in
comparison with their spans, i. e., with these of large aspect ratio. If one wishes to express
with mathematical exactness this simplifying assumption, it can be said that tile theory of an
actual wing of finite chord is not developed, but rather that of a "lifting line." It is clear
that a wing of aspeet ratio 1 : 6'may be approximated by a lifting line, specially if one considers

that actually the lift is concentrated for the greatest part in a region nearer the leading edge.

It is easily seen, however, that a surface in tile form of a square can be approximated only
poorly by a lifting line.

If we assume a straight lifting line, which lies in a plane perpendicular to the direction

of flight, the flow due to the vortices, which according to the Biot-Sarvart law, is caused by its
own elements, will not produce any velocities at the lifting line itself except the circulation

tlow around it, which would also be present for an infinitely long lifting line having the same
circulation as at the point observed. All disturbance velocities at a point of the lifting line,
which arc to be looked upon as deviations from the infinitely long lifting line, are due therefore
to the vortices which run off and hence can be calculated easily by an integration.

A qualitative consideration of the distribution to be expected for the disturbance velocities

along our lifting line shows at once that--just as was the ease for a biplane--the chief tiling is the
production of a descending current of air by the vortices. If we wish to retain the lift of the

same intensity as with the infinite wing, the angle of attack must be increased, since the descend-
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ing air stream added to the wind due to flight causes a velocity ohliquely downward. In addi-
tion, the air force, as before, must be turned through the same angle, so that a drag results.
The rotation will be the greater, the greater the lift and the ch)ser to the middle of the wing

the inain production of vortices is. The

227= Z +L r

V Y

2zo

v

L

Fla. _t:l. Win*z h_l% illg fi[lite, "Put Slll_l}l, chord. Distribution of vertical velocity

component along a line parallel to dirt,cUon of flight.

T. Infinitely long ,._ing.

It. The downward velocity i,rodut'ed 1,3' vortices flowing off.

IH. Finite wing, sum of I and Il.

drag must therefore increase both with
increasing lift and with decreasing span.

A picture of what occurs with a
wing of finite but small chord is given in

figure 43. There the change is shown
of the vertical velocity component along

a straight line parallel to the direction
of fligllt through the middle of the
wing; in the upper part of the diagram,

for the infinitely long wing, in the lower
part, for the finite wing. We see from
Curve I tim rising flow in front of the

wing, its transformation into a descend-
ing one at the wing itself and the gradual
damping of the descending component
clue to the upward pressure drop behind
the wing. (See see. 15.) The corre-
sponding curve for the finite wing is
Curve ill It is derived from I by

adding to the latter the descending ve-
locity II. We recognize the rotation of
the protile as well as that of the lifting

force, which was originally perpendicular,

through the angle _ where tall ¢ ='_ii, and

w is the velocity downward at the location of the center of pressure (i. e., at the lifting line).
If we follow the method of Lanehester, as described in section 15, the downward velocity w can

also be looked upon as a diminution of the ascending ttow at: the leading edge of the wind due
to the absence of the sidewise prolongation of the wing, i. c., to the deviation front an intinitely

long wing which was the basis of the treatment in section 15r Dis--

eussions very similar to tiffs are given in Lanchester, Vohmle [,
section 117.

It may be seen from the .figure that at great distances behind

the wing the descending velocity is 2w, which agrees with the relation d2

already mentioned that the velocities due to a straight vortex ilia- _ iiiment extending to infinity in both directions nre twice those due to .... _+

a filament extending to inlinity in one direction only, for points in the _x_x_ r
plane perpendicular to this vortex passing through its end point.

22. The mathematical processes involved in carrying out the

theory outlined above become the most simplified if one considers as
known the law, according to which the lift is distributed over the wing. rE_.44.--Velocity at a point z' due
We shall call this the "first problem." The calculation is made as to vortex leaving wing at point z.

follows: The distribution of lift is the eireulation expressed as a function of the abscissa x. The
dF

strength of the vortex filament leaving an infinitely small section dx is then d)" dx. This

produces at a point x', aceording to what has been already explained, a vertieal veloeity
downward or upward of the amount

1 dF dx
dw=4_ " dx z'- x
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In this x'- x takes the place of r in section S. If the circulation falls to zero at the ends of the
wing, as is actually the case, then all the vortices leaving the wing are of this kind. The whole
added velocity at the position x', assuming that the function F(x) is everywhere continuous, is

1 _ dI' dx (37)w=4_ dx " x'- x

We must take the so-called "chief value" of the integral, which is indeterminate at the

point x=x', i. e., the limiting value
i t'[-_ ['b \

lim.(I ÷ / )
e----)o\Jo J_Y+_

must be formed, as a closer examination shows. We can do this by calculating, instead of the
value of the velocity at the lifting line, which is determined by the preponderating influence
of the nearest elements, the value of w for a point a little above or below the lifting line. It
is seen that this last is not indeterminate and that by passing to a zero distance from the lifting
line it reaches the above limit. Concerning this excursus, important in itself, the preceding

brief remarks may be sufficient.
After the calculation of the integral of (37), the downward velocity is known as a function

of the abscissa x' (which we later shall call x). We then also know the inclination of the

resultant air flow, tan _=_V; the lift dA=pFV dx', acting on the section dx', therefore con-

tributes to the value of the drag

dW=tan _. dA=pP(z') • w(x') dx'

since it is inclined backward by the small angle _. The total drag is therefore

b _ (3S)
IV=p F(x')'w(x')'dx'=4-_ o x -x

For a long time it was difficult to find suitable functions to express the distribution of lift,
from which a plausible distribution of w would be obtained by equation (37). After various
attempts it was found that a distrihution of lift over the span according to a half ellipse gave
the desired solution. According to this, if the origin of coordinates is taken at the center of the

wing,
_1 (x) 2 dF --FoxF=F 0

b/2 'hencedx=b /[b_'_ x_
2_\2] -

The "chief val.ue" of the integral

_+ t dt-(t, Zt)4i_t_ is equal to
FoTr

and therefore the integral of equation (37) is equal to b_' and thus is independent of x'

and constant over the whole span. IIence
Fo

w= 2b
The value of I'o is obtained from

A=pV Fdx=pl'Fo l_b/2 =p 1o-4 b,

giving 4A

Hence
2A

w = (39)
_pVb:

Since w is constant there is no need of calculating the drag by an integral, for it is simply

w A 2A: A_"
W= V =Trp l"2b2=r_tb2 (40)

31



REPORT NATIONAL AI)VISORY COM.MITTEE FOR AERONAUTICS.

The calculation e'm also be perfomned for distributions of circulation given 1)y the following
general formula:

r= _/1-_ (r0+r_-'+r, _,+ ...) (41)
Z

ill which } = b/2"

According to the calculations of A. Betz

w=2_b 2n ro_. }2m[(2n+ l)t) .... --2rip ..... 1 (42)
tn=o

alld

{ /IV= _rp,_..2k F_i ]'2k qi+m [(2]C+ 1) l)k_,,-- 2kpk_m__ (43)
4 -' m=o

m which tile numbers p and q have the meaning

1.3 .... (2n- 1). p,
P"= 2.4 .... 2n ' %=2.42' p° -l' p__=o

The elliptical distribution of lift, ap,_rt from its simplicity, t_as obtained a special meaning
from the fact that the drag as calculated from equati(m (40) pro)red to be the smallest drag th'_t

is imaginable for a monophme having given values of

t°°/4o

20

.3a

-26
E \

/

/0 20

FIG. 4.5.--['olar diagram stlo\_ ilia Iheorctical drag and
o,h_r_ (d dr_l_.

the total lift, the span and the velocity. The proof of
this will he given later.

It was (tesirat)le t[) compare this theoretical mini-

mum dragwith the drags actually ohtained. .,ks far back

as 1913 this was done, but, on account of the poor quality
of the profiles then investigated, all that was done was
to estal)lish that the actual (lr'tg was greater than the

theoretical. Later (1.(.)15) it was sho¢'n, upon the in-
vestigation of good profiles, that the theoretical drag
corresponds very closely to the relation giving the change
of the observed drag as a function of the lift. If we

plot. in the usu'd re,tuner the theoretical dr'lg, as given
in formula (40) as a function of the corresponding lift,
we obtain a ])arabola, which runs parallel with the

measured "t)olar curve" llH'ough the entire region for
which the protile is go,J(l. (See fig. 45.)

This l)rocess was repeated for wings of different as-
pect ratios, 'rod it was t)roved that for one and the same

pl'olile the dill'erenct, t)et_veen the measured and the theo-
retibal drags for one and the s'mm value of the lift coeili-
cleat had almost identically the same value in all cases.

This part of the drag depends, however, utmn the shal)e of the i)r()fih ,, and we have therefore

called it "profile drag." 'l'}w part of the drag ol)tainc(l from theory is called "edge drag,"

since it dei)ends upon th(, phenomena at the edges ,)f the wings. More justitiably the expres-
sion "induced drag" is used, since in fact the phenomemt with the wings are to a high degree
analogous to the induetiml phenomena observed with electric conductors.

Owing to this fact that tim profile drag is independent of the aspect ratio, it became possible
from a knowledge ()f tile a,'tual drag for one asl)e('t ratio to ('Mculate it for another. To do

this, we pass from Ihe formula (40) for the drag t,, the dimensi(mless lift and drag coetticients,
A II' ",

by letting Fq=C_ and Fff=:c_: we o})tain lhcn for the coetticieni of the induced drag the
relation

Ca2 I +,

c,,i - _b_ (44)
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The protile drag may lhen be written c,,,. c,, c,,i. If this drag coetti('ient dept,ntts only

upon the lift ('(wt[i('ient, then it wt)ultl l)t, evident, sim'e it w(,uld be the diit'ereiwe between the

measm'ed and thc theoreti_'al dl"_g co(,[tieients, lhat, for tht, l),_lar curves ()f two diirerent wings

having c_, = Ca: : C:,,

c_=I"_ </ l':,

(!_1 zrb l:_ --- ('_': 7r, _r _ "_

and therefore

C"2-_C_1 f rr \b: 2 /r12/ (-t5)

Ira a similar manner a calculatiml for the angle of attack may be made if we presuppose an

elliptical distribution of lift. According to our :_ssunaption there is a close connection between

the lift of the St, l)arate (denwnts ()f the wing and the "(qt'eetive" angle of attack, which is tht,

same as the ,ingle of atta,k (,f an intinitely long wing. This cft't'ctive angle of atta('k, according

to our earli¢'r vonsiderati¢)ns, is the angle .f attack ()f t]le ('herd wilh reference to the resultant

IL,

air current. It is therefore ¢,'=cz 4). If we sul)stilute tan 0 :: I'f°r 4), 'rod introduce in equa-

tion (3(.t) again the lift c,)efti('ient, instead of using the lift, we .btain for the eoulparison of txvo

l'l_i. Eta. Unipkm:lr Ilow iu ep_e (,f _'lli>lie dis-

{ riblll[utl of lift or1:1 [i!rirl_: ]lrl( _.

wings, exprt,ssing the fact that tile effective angle of atta('k

.s to 1)e the s_mle for tw. equal lift coetlicients, the relation
1

"' 7: b/: _'-'-_ b__'

w]li('h hinds to the transformation formula

q/
%::'_'_ ,-rl,.b.:" b,'/ (46)

Thes(_ formulas have been from(1 to hohl for distrit}u-

tions of lift which (1,) not tleviate too much from elliptical ones, although strictly speaking they
apply only to the latter. The fact that the type of distribution does not have. a marked ell'cot

is based upon the consideration that both in the calculation of th'ag and in th'(t of the mean

elreetive angles of attack we are concerned with aver_tge results. For tile calculation of the drag

one can also introduce the thought th,tt no quantity varies mu(ql in the neighborhood of its

minimum. Ch)ser investigation of the S(lU,re cornerett wing has shown th:lt if tim asl)e(.t ratio

is not too small, the lift ,tistrihuti(m does not (levi_(te greatly frmn t]l(_ elliptic type, nnd that the

theoreti('al (lr(ig for usual nspeet ratios at the most is 5 per ('('nt greater than for the elliptic

distributitm. .ks an ex_mlple of tht,se formulas we shall take %ur iigures from the book put_lished

by the Gatting('n Institute (Ergelmisse der Aerodynamischen Versu(qlsanstalt, 1, Litfferung, 1921 .
The tirst tm(l see,rod [igurt,s show the pohu- curves, and the ('(mnection between lift coeIlicient

and angle of in('idence fro' seven wings of aspect ratio '(' 1:7 t() 1:1. Tile htst two figures give the

results of calculating these experimental quantities from the results for tile wing having the uspect

ratio 1:5. It is seen that, apart from the 'tspect ratios 1 :I anti 1:2 pr'tetieally no deviati(ms

are present. The fact that the S(luare can not be ('orrectl.v deduced from the asl)ect r,ttio 1:5

need not excite surprise, sim.e the then, T was deveh)ped from the concel)t of the lifting line, and

a square or a wing ¢,f aspect ratio 1 :'2 can scarcely be properly approximated lly a lifting line.

On the other hand it is a matter of surprise that an ast)ecl ratio of 1:3 can be sutticiently
approximated by the imaginary construction of a lifting line. The deviations in the (:use of the

square are moreover in the tlireetion tree would expect from _t lift distribution expanded over

the chord. :k quantitative theory is not available in any ease at the present time.

-'3. If the lift distribution is not given, but, for.example, the downward velo(.ity, then the

method of treatment folh)wett hitherto may be use(t, t)y developing the downward velocity in a

power series and determining the constants of the series given above for the lift from the constants

IQ The Allrlorican practice is t(_ Ilefille aspect ratio as the ratio of sl)aIl to chord, which _ otll(i iitvolve taking the reciprocals of tile ratios given
ill the text. Tr.
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of this power series by tile solution of linear equations. By this the lift distrilmtion and every-
t,hing else ttre known.

Another method for the solution of this "second l_roblenl '' will be obtained by the fol-

lowing consideration: The velocities at a distance behind the wing, on account ,,f the eonnectiml

mentioned so often between a vortex tilament extending to infinity in one direction only and

one extending to infinity in both direetions, 'm, twice as great "ts ttmse in the cross section of

the lifting line, if we do n.t take into aecounl the change in shape of the vortex viblmn. We

therefore have hece, neglecting this ehnn_e in shape, 'm illustration of a two-dimensiomtl fluid

flow (uniplanar ttow), for which the vertical vehwitv components "tt the point where the wing

is re'whed are specilied. ["or the simple ease that the vertical velocity u, is constant, as was

found to tm true for lhe ellipt ical lift distribution, the shape of the tlow that arises has been knmvn

for a hmg time. It is given in ti_ut'e 49a. It is the same as thaC alrendv considered, in ,mother

conneetitm in section 15. The picture of lhe stre,mdines show ele'n'lv the vehmitv disconti-

nuity t)etween the upper and lower sides of the vortex ribbon, indieated l;v the nick in [he stre,m>

lines, and also the vortical motion around the t0wo extreme points of the vortex ribbon, corre-

sponding to the ends of the wing.

Any p,'o|dems of this kind can therefore be solved by means of the methods provided by

the potential theory fro' the ('orresponding problent of two-dimensi,mal lluid llow. V,,re can

not go into these matters more ,'losely at this time; by a later opportunity some special rela-
tions will be discussed however.

A " third proldem" e,,nsists in determining the lift distribution for a definite wing ]roving a

given shape and given angle of attack. This problem, as m_Ly be imagined, was the tirst we

proposed; its solution has taken the longest, since it leads I. an integral which is awkward t.

handh,, l)r. Betz in 1919 succeeded after very _reat eff, wts in solving it for the case of a square-

cornered wing having everywhere the same profile and thesnme tingle of nttnck. The way the
soluti,m was obtained may be indic'trod briefly here. We start as 1)el'(we from the relation

c_=a' +O-'a' + I"

l_y equation (37) 'w is expressed in terms of the circulation. The effective angle of nth,'k

a' can be extm'ssed in terms of I', sire'e, neeording to ihe nssump/ions mnde bef,,re the lift,

distribution, which is pr.portion'fl to I', depends dire,qlv upon a'. The relati.n between a'

and I' :'an be assurer,t{ t() he given sufficiently exi,('lly t'(w our t)Url)(_s(,s t)y "l linear expression

1'= l't (q a' +c 2) (47)

in whicht is thelength of the chord (mensured in the direction ofllight). By the introduction

of the flu't.v Vt, e, and e_ are made pure numbers. The numerical value of q, whielt is the more

important, can be expressed, if ¢',_ is the lift ¢'oellicient for the infinitely hmg wing at the angle

of attack cd, by the relation

1 de_
e'=2 da'

In fact

A p F 17 21'

e_= Fq=lt I =l,t=2 (ef/+c_,)
• '2 p I"2

F,n" a tlat-plate theory proves that_ q = 7r, for mwved wings it has n slightly greater value.

df'

If, aeeor(ling to what has gone before, we express a' 1)3' r and 'u" t)y dz and write

dI' _f( x)tLr,dx =f(z) and thereflwe l' =

we obtain after a simple caleuhtti,m the integral equation

jo fiz) dz+ i, " , ,
"" c,t [" l(.r )dz

" 4rr.]o x- z' = I_t (qa + c:) = const. (48)

35



REPORT N:'vrI()NAI, AI)V1SORY COMM.ITTEE FOR AEIIONAUTI(?S.

A solution of this equation can be obtained 1)3- expanding 1' as in equation (41) and develop-
ir

ing then all tile expressions in power series of }=b/2. For every power of } there is then

a linear equation between the quantities Fo, I'_, etc. There is a system of equations, them,
with an indefinite number of equations for an infinite number of unknowns, the solution of
which in this form is not vet possible. The aspect ratio of the wing appears in these equations

b.
as a parameter, trod it is el(mr that the solution for a small aspe_'t ratit), i. e., t is easier than for

a htrge one. Dr. Betz proved that "t developInent in powers ('an be'made for the unknowns in
terms of a parameter containing the aspect ratio. The calculations whi(:h are contained in the

FIG. 50.--('hang(' ill ,]iMri} tlli,)tl I,f lift, a_ a [tmclion of L, tht! p:mlm,!h,r of B,,tz.

<lissertation 't of l)r. Betz (1919) are

vet')" complicated and can not be re-

produ(!ed here; but certain results will
he mentioned. The Bctz parameter
L has the meaning

2b 4b da'
L=

c1 t = t dc_®

In the application to surfaces which
are investigated in wind tunnels the

dca dca __ For
value da is knowm not da''

this case theory gives a relation which
can l)e expressed approximately

L_3.85 b da
t dc_- 1.3.

We can thus obtain the value of --
dea_

from the connection mentioned.

The distribution of lift density
ever the span is elliptical for very small

aspect ratios and for greater ratios
becomes inore and more uniform; for

very elongated wings it approaches gradually a rectangular distrit)ution. Figure 50 shows
this change in the distribution depentting upon L.

The drag of the wing with the rectangular distribution is greater naturally than with the

elliptic distribution, since this gives the minimunl of drag, yet the difl'erences are not very great;

L = 4, (o _6) it is at)otit 5 per cent gret_ter than that of the elliptical distri-
%

for instance, for
/

button. An approximation formula, according to the values obtained l)y Betz, is

A _
ll'=_ _-/)_ (0.99 +0.015 L).

This is applicable for values of L between 1 and 10.
The distribution of lift, downward velocity, and drag upon a very elongated wing is shown

qualitatively in tigure 51. It is seen that the downward velocity and the drag gradually accumu-
late at the ends of the wing. This gives also the correct transition to an infinitely long wing,
with which for interior positions the lift is constant, and the downward velocity and the drag

are equal to zero, while, as we know, near the ends these last quantities always assume finite
values.

II Printed in extracts in tteft 2 of the "Beriehte u. Abhl. der Wiss. Ges. f. lmftf." Munit.h, 1920 (R. Oldcllbcurg).
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E. IMPROVED THEORY OF AIRPLANES HAVING MORE THAN ONE WING.

24. Tile knowledge obtained in tile theory of a monophme can l)e applied also to multi-
planes and furnishes here a series of remarkable theorems. We shall limit ourselves to the

theory of the first order, as (lesignated in the theory of monophmes, therefore we shall neglect
the influences of v. Further, we shall not take into account the effect of curvature i.e., we

shall consider the separate wings replaced t)y "lifting lines." For the sake of siinplicity we
shall limit ourselves to multiplancs with wings which are straight and parallel to each other.
The generalization of tile theorems for nonparallel wings, corresponding to the deduction given in

"Wing theory II," will then be stated without proof.
Let us first solve the introductory problem of

calculating the vertical velocity w produced hy a
lifting line at a point A which lies off the lifting
line. At tlle beginning let us assume that this point
lies in the same "transverse plane" (plane perpen-
dlcular to the direction of flight). According to
our assumption as to the location of A, the action
of the transverse vortex is zero: With reference to

the longitudinal vortices it is to be remembcred that

1 dr dx produced t)y a longitudinalthe velocity 47r dx " a

dI"
vortex of strength dx dx is perpendicular to the

I t
[HlllilIIllllJNIillil]]]l[

i i
I

I

I t
w. li!ll}llll}l!l}lll}

FIG. 51.--Distri )lllil I1 o flirt, dow 1-x_ash 1 1(1, rag for a ]orlg _ ing.

line a (see fig. 52), and therefore must be multiplied by sin 2 to obtain the vertical component.

We arrive at the downward velocity, therefore, by integrating over the lifting line, viz:
b

it' = --4_"

This relation can be brought into another form by a partial integration. Since at both wing
ends I" = o, we have

w=1 ,z
But

d (sin__d ( ) ,F--2x'- 1-'2sin:_ cos'2_dx \ a ]- dx t? = a_ = az = a _
s,_ that we have

1 r:,, cos 2
it dx (50)

W = 47r dtt a:

With the aid of this relation we can write down immediately the wdue of tile drag which arises

owing to a second wing being under the influence of tile disturbance caused by the first wing

A%z

zt -_ d.i.

FIr;. 52.--Velocity at

a point, A og the.

lifting line, hm in

the transverse

plan% due to the

_ortex system.

the drag calculated here, that therefore,

lying in the sadie transverse plane. Let US call w,__the disturbance velocity at
a point A on the second wing. According to the results of section 22, the

drag then is
('t)_

It]: = p/I':w,_dx
j0

,)r, if the value of w,2 as given by equation (50) is sul)stiluted,

B]:=:Tr Fh, fb: cos 2_

The (h)uble integral, as one sees, is perfectly symmetrical in the quantities asso-
ciated with both wings 1 and 2. We conclude from this that the drag which

wing "1 experiences owing to the presence of wing 2 is of the same amount as

B"h = II_,.
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In the more general case of two curved lifting lines lying in a transverse plane, a formula is

obtained which differs from equation (51) only in having cos (2_ +_.,) in place of cos '2 B in which

_, and _2 are the angles which the line a makes with the norma[s on the two lifting elements con-

nected by a, and in having dsLds: in place of dz_dz2. The relation It'_. = W., therefore hohls in

this case also. This mutual relation, which was discovered in a different manner by my assist-

ant, Dr. Munk, is of importance in various applications. Since it plainly is not necessary for

the lifting elements taken as a whole to })oh)n(- to a single surface, the theorem may be stated:

If, out of a lifting system all of whose elements lie in a transverse phme any two groups

are selected, the portion of the drag experienced by group 1 due to .the velocity field of group '2

is exactly of the same amount as that experienced by group 2 due to the veh)city fieht of group 1.

We can interpret the partial integration performed above by saying that the velocity m

appears by it as built up out of the c,)ntributions by merely infinitesimal wings having the

length dx and the eirculalion F, while previously we have ahvays built it, up out of the aet ion.¢

of the separate vortices dI'dXdx" The intcgrand of equation (50) in fact agrees with the velocity

which is caused by two vortex lines of equal but opp,)site strengths F lying at a distance dx apart.

The double integral in equation (51) can, from this point of view, be looked upon as the stun

,)f the actions of the vortex strips of all the elements dx, on all the

lifting elements dx.,.

o The objection might lie raised that equations (50)and (51)cease

to be ,tpplicable if the value a = o apl)ears, since this gives an expres-

sion of the form .z.-_. They are not, therefore suited for the

z calcul,tion of the velocity ¢_ _ t the wing itself. In this case we must

retm'n to equation (49), and take the "chief value" of the integral;

or, the value of w_: and of Ill: flu" a lifting line that lies very elos('

nmst be calculated, and then we can .t)tain our final result by passing
Z'

to the limit for coinciding lifting lines. As is seen from this, the
FIts. 53. -Velocily :u a poinl A r

n_,linthetr ...... ersc!,la,,,'.d'u,' relations li_:= lI',_ hold also for lifting lines coinciding in space,

t,) _h_,-(_r,._ _)'_('.... which, besides, may have any arbitrary lift distribution.

The mutual drag need not., as has already tieen mentioned, always t)e positiw'. For in-

stance, it is negative for two wings placed side by side, since lhen each wing is in an ascending

current caused by the other, and the total drag is therefore less than the sum of the mutual

drags wtfich each of the wings would have at "_ greater distance apart. The behavior of certain

hirds which in a common flight space themselves in a regular phahmx can t)e explained by

reference to this.

25. In order to tie al.le to trcat the case (If staggered wing systems, the next problem is

to calculate the velocity fieht due to a lifting element of the length dx together with its pair of

vortices at a point A which may now lie off the transverse phme, and at a distance y from it.

(See fig. 53.) The origin of coordinates will be taken at tim projection of the point A upon

the transverse plane, and the X axis p,u'alM t() the directi(m ()f the element. Using the abl)re-

elations

the velocity produced at the point A t)y one of the two vortices, by formula (61)), is given by

4_a(l+Y); the compohent in the direction of the Z axis, towhichwe here again limit our-

%

selves, is, then, putting sin B =x-.
a

Fx (l+Yr)w'_ = 4ra:

The pair of vortices produces then a velocity which may 1)e written as the difference of lhe

effects of two vortices which are close together:

d Ow 1_ Fdx F[ct 2 - 2xV ?./\ x:!/ -]
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To this must be added the contribution of the transverse vortex

dw_ = I'Jx . y
- 4_r._

The sum of these two velocities, if the two angles defined in figure 53 are introduced, amounts to

dw I'dxlcos 28 1- sin _ . cos 2/3/
= 4_1 _ (1 + sin _) r_ l (52)

With the help of this formula we can now calculate at once the drag cxperienced by a lifting

element situated at the point A and parallel to the former, whose l_ngth is dx: and circulation

I'=. If the tirst element is given the index 1, this (h:.lg is

d 2 Wt2 = Pl"l'dl'r"lx_[Ic°s---47r" _l a _'2/3 (1 + sin ,_)÷sin at _e°s:/3)] (53)

As is easily seen, the drag produced on the lifting element 1 by the lifting element 2 is obtained

if in place of a and 13 the values a + 7r and fl + 7r are introduced. Therefore it is

d' W.,. =v I': l',4rrdx, dx, kl[-/"°sa"2/3 (1-sin c_)- sin c_r_c°s: 131] (53,)

It is seen from this that the two parts ()t" the drag are equal only if a-o, that is if the two ele-

ments lie in the same transverse plane. Yet in the.general case the sum (P IF,: + d 2 li:_, is inde-

pendent of a, therefore independent of the amount of stagger. The sum of the two mutual

drags leads thus to the same formula as that ah'cady derived for nonstaggercd wings. If we

again pass to the general case of nonparallel lifting lines, in which again d,% and ds 2 are to be

written in place of dx_ and dx=, we obtain as may t)e proved hy performing the calculation, the

relation

p f_l'_ I':ds, d._cos (fl_+fl_ (54,

As is evident, this sum remains unchanged if the two lifting groups are displaced in the direc-

t.ion of flight. Since the total drag of a lifting system is composed of such mutual drags as cal-

culated ahove and of the proper drags of the separate wings, which likewise are not changed

by a displacement of the wing in the direction of flight, the following theorem may be stated:

The total drag of any lifting system remains unchanged if the lifting elements arc displaced

in the direction of tlight without changing their lift forces.

This "stagger theorem" was likewise proved by Munk. F.r a proper understanding of

this theorem it must be mcntione(l expressly th,_t, in the (lis|)]acement, of the separate lifting

elements, their angles of attack must so 0e changed that the effective angles of attack and there-

fore the lifting forces remain unaltered.

This theorem, which .tt first sight is surprising, may also be proved from considerations of

energy. Let us remember tl_at, by the overcoming of the drag, work is done, and that in a non-

viscous thtid, such as we everywhere assume, this work can not vanish. Its equivalent is, in

fact, the kinetic energy that remains behind in the vortex motions in the rear of the lifting

system. This energy depends onl:,- upon the character of these vortices, not upon the way in

which the_" are produced. If we neglect, as we have throughout, any change in shape of the

vortex system, then, in fact, the staggering of the separate parts of the lifting system can not

have any influence upon the total drag.

26. For the practical caleulatibn of the total drag of a multiplane, we have then the follow-

ing: The total drag consists of the sum of all the separate drags and of as many mutual drags

as there are combinations of the wings in twos. If the nature of the lift distribution over all

the separate wings is specified, then the proper drags are proportional to the square of the sepa-

rate lifts; the mutual drags, to the product of the lifts of the two wings in question. If the

coefficients of this mixed quadratic expression are all known, then one can solve without diffi-

culty the problem: For a specified total lift, to determine the distribution of lift over the sepa-

rate wings which will make the total drag a minimum.
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In order to know these coefficients to a certain degree I calculated them for the case of two

straight lifting lines whose middle points lie in the same plane of symmetry, with the assump-
tion that the lift over each separate wing is distributed according to a half ellipse. The results
are given in my paper "The induced drag of multiplanes" in Volume III, part 7 of the Tech-

nische Berichte. For this purpose the velocity w for the entire neighborhood of a wing in the
transverse plane was first calculated by formula (49), and then the integrals for the mutual
drags were obtained by planimetry. To show the analogy with equation (40) this may now
be expressed by the formula

ii_2_a A, A2 (55)
- *r q bL bz

by means of which the numerical factor _ can be expressed as a function of the two variables

h and bb:,. Calculation gave the following table:
(b, + b2)

TABLE I.--_lues of a

0 0.05 0.1 0.15 0.2 0.3 0.4 0.5
i bl+b_

: i i ! !

1 b7 { 1108 0.780 0.655 0.561 0.485 0.370 0.29(I 0.230b l _ . fi90 . f_)0 .523 .459 .355 .282 .225
.6 , .540 i .485 .437 .394 ,315 .255 .210

The curve of the function _ is given in figure 54. For the most important ease, viz, for
two wings of equal span, I have developed an approximation formula which is

1- 0.66_

,r = 1.055 +3.7 h (56)
b

It may be used from h=0.05 to 0.5.

The total induced drag of a biplane is then, if b, is the greater span and if the ratio b_
b,

is designated by u

W= IV,, + 2 W,_ + g_, = _b_(A,2 + 2apAlAz + p2A2: ) (57)

Simple calculation shows that for a given A_ + A2 this drag is a minimum for

A2 : A,= (u-_): (_-_) (58)

The value of the minimum is fouud to be

lVm_,= (A, +A2) a I - or'
7rqb,2 1 - 2a# + #: (59)

The first factor of this formula is the drag of a monoplane having the span b_ and the lift A, +A_.

Since a<u, the second factor of the formula is always less than 1, i. e., the induced drag of a
biplane is less than that of a monoplane which in the same span carries the same load. For

a "tandem," i. e., an arrangement of two wings one behind the other, the stagger theorem shows
an equivalence with two coinciding wings, i. e. a monoplane. Among the different biplanes
having prescribed span b_ and prescribed gap h that one is the most favorable in which the
second wing also has the span b_. The most favorable ratio of the two lifts is then 1 : 1 and

1
the second factor of equation (59) becomes equal to 2 !1 +a).

These statements must not, however, be misunderstood; they refer only to the comparison
of such wing systems as have the same value for the greatest span. Naturally, for every biplane
a monoplane may be found with somewhat greater span than that of the biplane, which at the
same total lift has the same induced drag as the biplane.
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This last remark leads us to apply also to the biplane the deduction formulas obtained for
monoplanes. All that is necessary is to replace tim biplane of span 5t by a monoplane of a
somewhat greater span kbl, which with reference to the drag--and, on the whole, with reference
to the angle of attack--is equiwdent to the biplane. If again we pass from the lift and drag
to their coefficients ca and c,, the formula connecting tile drags of any two lifting systems
1 and 2 is

Cw,-C,,:= _ \(]_.lb/)_ (_':b._)-] (60)

in which, as is easily seen, the factor k, for a biplane having the most favorable distribution
of lift, is the reciprocal of the square root of the second factor in formula (59).

The tests of this formula with biphmes have sh_wn that, when by giving a special shape to

the wing the lift distribution w_s made elliptical, there was good agreement with the calcula-
tions from monoplane experiments; with 1)iphmes having the usual square-cornered wings,
on the other haml, there was a discrepancy, which is to be attributed to the fact that the lift
distribution on.these biplanes deviates to() far from an elliptic one. We can, however, retain
the same transformation formula if the fac-

tor k is determined empirically for every
wing system; it is found to be somewhat
smaller than according to the theory given
above. The experiments on this point are

not yet completed, so more accurate values
can not as yet be given. The earlier GSt-
tingen experiments were worked up by Dr.
Munk, to whom this last idea is due, in the

paper "Contribution to the aerodynamics
of the lifting parts of airplanes" in the
Technische Berichte,Volume II, page 187.

27. In the previous section I have treated

the problem of finding the minimum of the
induced drag of a multiplane, under very

definite assumptions concerning the distri-
bution of lift over each separate wing. The

strict minimum problem is however differ-
ent, viz :

To determine for a given front view of

:.o i

0.8

0.7 ----

0.4

0.3

0.2

O'l_o 0./

I i

]....

O.B b, + bz
h.

2

03 04 05

Fro, 5J. -(;urvc of the function ¢ for biplanes whose s[..an ratio, _,=_:,is varied.

a lifting system that distribution of lift over
all the lifting elements which will make the induced drag a minimum for a specified total lift.

In this statement of the problem the expression "a given front view"--i, e., more exactly

stated, a given projection of the lifting system upon a plane perpendicular to the direction of

flight--is used to mean that the wing chord is of secondary consideration, and does not need
to be determined until later when tile selection of suitable angles of attack is made.

The general solution of this problem was also given by Dr. Munk. It will be deduced here
in a simpler manner than that given in Munk's dissertation, where the solution was obtained
by the calculus of variations. By means of the stagger theorem mentioned in section 25 the
wing system will t)c referred back to the corresponding nonstaggcred system. For this, as we
showed, the relation 11_2= Ii_ holds. We shall now introduce--with the simplifying assumption
that all the lifting elements are parallel to each othcr--a variation of the lift distribution by

adding at any one place a lift _A and at the same time taking away an equal amount at some

other place, so that on the whole the lift, which is prescribed, remains unchanged. We must
now consider the change in the induced drag caused by this variation. If there is superimposed

upon the lift distribution an additional air force _A distributed over a short portion dx, there
arises therefrom, in addition to the drag proper of the added lift--which, however, if sufficiently
small is of the second order--a mutual drag, because on the one hand the added lift finds itself
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in a ttow having ttle downward velocity w, which is due to the lifting system, and on the other

the lifting s3-stem is in the veloeity tield of the added lift. The first of these two drags, as is

easily seen, is &l V; the other part, accm'ding to our theorem has the same value; so the total

drag is twice this. What condition, now, must be satisfied by 1he sum of the mutual drags

caused by our twofoht e[tange of tim lift distril)ution in order to obtain the "d)solute minimum

of theindu('ed drag. + The answer is, evidently, that we will h*lve the minimum (,nix- if bvno

change of this kind can the drag be further(liminished. The sum of the induced drags, there-

fore, can in no ease be negative; also it may n(,t be positiw,, because in that case t)y a reversal

of the signs ()f the changes which we seleete(t we eouht make the sum n'egative. Only the value

zero is therefore allowal>h,. IIence, if _' is the vertical veh,citv at point 1 and % that at point
2, we lmve the relati(m

'It!1

and, therefore since <3+1, ..... &,12,

'71;'1 -- _/+'2"

Since this ]m[ds for all the lifting elements, we have obtained the answer. The lift distribu-

ti(m which in the given wing system, for a specified total lift, causes a minimum of drag is that

which leads to the snme downward velocity at all the lifting elements. With monoplanes the

elliptical lift distributi<>n lea(Is to a constant downw'u'd vel.eitv u_'. We recognize from this

that tile elliptical dish'ibution in fact is ibm distribution of lift which causes the least drag for
a m<moplane.

The the(u'em can, besides, be extended easily to the ease of nonparalM lifting elements

lying in a transverse plane. If u',, is the velocity in the transverse plane perpen(ticular to the

lifting element and E is the angle between the direction of u_,, and that of tile given total lift.

then, as may t)e shown without ditticulty, u,,, V'o e()s+ fro' all tile elements. (If _--o, and

hence cos _ =: 1, the stMement m'tde ab.ve again apl)ears. )

28. A way to solve the i>roblem of finding the lift (listribution for a prescribed distributio,

of the vertical velocity has been in(ticate(l alrea(ty in section 23. The velocity fiehl left behin(1

in the air by the lifting surface, is, approximately, according to the remark made before, .t

unit>lanar th>w ar(>und the vortex system produe('(l 1)y the lifting system in its motion, and this

vortex system may be regarded, as a tirst .q)l)roximation, 'ts a solid body in the fluid. In the

minimum ease this figure, according to the results of section 27, moves like a rigid body, not

alone in the case of p.u'alM lifting elements, but also in the general ease, for the g(,neral mini-

mum con<litton, +_',,-t,,,, cos _, expresses directly that the normal velocity of the lluid at an

element of the rigid tlgure moving in the direction of the lift coincides with the normal com-

ponent of the w,h)eity _'(, of the rigid tigure itself. The problem is thus reduced to a perfeetly

definite one treated in the hydrodynamics of uniplanar tluid moti(m.

This uniplanar tlow can be brought into relation, in a specially clear manner, with the

pressure distribution existing on the wing syM.em. The wing systeIn, during its motion along
its path, imparts to one portion of the air after the other the veh)eities which we have learned

to know as the result of the vortices flowing off h'om the wings. This transmission of velocity

is the result of the spreading out of the pressure tiehl of the wing system over the air particles

one after another. In order to simplify the phenome,mn for ourselves we can now imagine

that these velocities are t>roduced at the same moment by ,t sort of iml)ulse phenomenon over

the whole path of the lifting system. To produce this impulse it is necessary to have a solid

figure of the shape of the geometrical region passe(l over by the lifting system (i. e., of the

shape of the vortex surfaces which it leaves behind). If we are concerned with a system of

least drag, this figure moves as a rigid body; otherwise it wouht also experience a change of

shape due to the impulse. The final velocity _r* of the figure colin'ides with the motion of the

vortex surfaces at a great distance from the lifting system, and is therefore to t)e put equal

to 2_v. For a monoplane having elliptical disti'ibution our tigure is therefore an infinitely
long fiat plate of the breadth b.
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By the production of the velocity during the impulselikc acceleration an increase in the
pressure Pl arises below the plate (ill the case of multiplane% under each of the plates corre-
sponding to tile separate wings) and at the same time a decrease in pressure p: above the plate
(or the plates). We can now compare in a very simple mamwr the total action of the pressure
differences at each point of a plate during the time of the impulse with tile total action of tile
pressure differences of the wing in its forward ulovement at the point of the nlediuln in question.
If the resulting motion is the same irl both cases, then the pressure differences integrated through
the proper times must have tile same values. If in the iulpulse phenomenon lasting a time r a

dAdz
portion of the fluid of length 1 is considered, and if therefore the action of the lift dx ' in the

I
time t= V required to pass over the length 1 is to be compared, tile following relation must

hohl for the conditions on a strip of width dx:

f dAdx 1
ldx j,_(lh - p2)dt = dx ' V (61)

A formula (-ommcted with our previous relations carl be obtained by a tr,-lsformation of the
left-hand term. According to a km)wu extension of the Bernouilli equation for accelerated
motion we have

O_p, pv -_
r _ p ,=f(t).P Ot 2

For our impu!se phenomenon tile arbitrary time function f(t) is a constant, since at the
points of the fluid lying far away from the impinging phltc the pressure does not change. If
tile impulse is suiliciently quick, ther_ during tile short time of impulse r the acctderation and

the pressure differences will be very large, and therefore the term pc: may be neglected in2

comparison with the other two, since it itself does not exceed moderate values. We obtain
therefore the simplified relation

POt + p = eonst. = po

which, if at the beginning everythiflg is at rest, (_P,,= o) may be integrated to

o_ == (po - p)dt (62)
o

we can therefore write in equation (61), the expression p(¢_-_,) in place of .JiP_-p:)dt.

potential differences %-,P_ which here appears is, according to the connection between poten-
tial and circulation (see sec. 5), nothing but the circu¼tion r for a closed curve which passed
around one edge of the vortex ribbon and intersects our vortex ribbon at z, the point consid-

ered. This circulation is agifin nothing but the circulation around the wing at the point x.
If the factor ldx is omitted from both sides of equation (61), it takes, as a result of this trans-

formation, the form
dA
dx = p (,I,2- _) V= o V F (63)

We have thus proved in an entirely in(h!pendent way, as we see, tile Kutta-Joukowski
theorem for a wing element, which previously we took over, without proof, from the infinitely

long wing.
The relation_ deduced in the previous paragraphs permit, in the case of a constant w,

the formation of general theorems for w and W in place of (39) and (40). By integration
of (63) the total lift is at once obtained

A = p vEf(42 - 4,)dx (64)

The values of • in this formula are proportional to the velocity w* of the vortex ribbon,
that is, are dependent upon A. Quantities which are independent of A are derived if the poten-
tials (I) are divided by w*. In this way we obtain the potentials for a velocity of the vortex
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ribbon equal to 1. Tile potential, being the line integral of the velocity, has the dimension
velocity times h,ngth; the potential 4, for w*= 1 has therefore the dimension of a length, and
hence

"2,f (_2 - ¢_,)dx

is a surface, which will in what follows he called F', which depends only upon the geometrical

properties of the projection of the wing system upon a l)lane perpendicular to the direction
of tlight, therefore Ul)On lhe front view of the wing system; anti which evidently for geometrically
similar front views is proportional to the square ,)f the st)an, l),y introducing F' into equation
(64) we have, since ep Ow*,

A - p 1%* F' (65)

From this we may immediately deduce w*, anti thereby also the downward velocity at, the point
of the .wing system

I , A
w = 2Iv = 2p i,l,V (66)

If this value is introduced into the relation W= I.A, we have

A 2 A _
IV= 2p I':F' =4qF' (67)

The evaluation in the manner of the flow of figure 49 gives a potential _, if the span of

the wing is set equal to b, which has the valuc_'(b/2)-- z_ at the plate. The geometrical expres-

sion of this value gives a circle having the span b as diameter, therefore F'=[bZ. Using this4

value formula (67) passes over in fact into formula (40).

It. may also be noted that a uniform velocity can be superimposed upon the uniplanar
flow here discussed, whose discontinuity in potential at. the rigid figure representing the vortex

ribbon causes tile surface F', without thereby changing the relation fog F', for the potential
discontinuity between tim lower and upper sides, with which we are here concerned, is not
changed by tile superimposed uniform motion. We may now choose the velocity of the uni-
form motion exactly opposite and equal to the velocity ,_* of the rigid figure, and thereby
secure the condition that in the new flow the rigid tlgure is at. rest and is surrounded by a flow
which at intinity ires the veh)city w. The forces which the rigid figure experiences by the

production of this motion, and which are connected intimately with the so-called "apparent
mass," arc what we have here set in paralM with the wing-lift.

The surface F' supplies in addition a very simple mechanical connection between the
velocity w on the one hand and the lift and drag on the other. According to equation (65)

A = p F' Vw*

WI'= :4w -pF' 1"w*2
-- '2

where in the second equation use has again been made of the relation w* =2w. Now oF'V
is the mass of air flowing per second through the section F'. If in order to simplify the whole

problenl it is once assumed that all the air particles within the section F' experience the full
deviation w* but that all outside are entir(,ly undeviated, then exactly the correct lift and

the correct work due to drag are obtained by al)plicati(m of the impulse theorem and the energy
theorem. For the lift is now equal to the mass of the ttuid deviated per second times the
vertical velocity imparted to it., therefore equal to the impulse imparted to the medium. Also,
in the same manner, the work done per second by the drag IVV is the product of the mass of

the fluid passing per second times the half square of the. detlection velocity, and therefore equal
to the kinetic energy left behind in the medium. This relation is indeed best suited to establish
the phenomena of the theory of airplanes in a course for students who are only slightly skilled
in mathematics. The fact that for a monoplane the circle having a diameter equal to the span
comes out as the surface F' is one that will appear most t)hmsible to the laity.
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form the

values :

29. Of the theory pictured in the preceding section, according to which the determination
of the induced drag in the case of the most favorable lift distribution is reduced to a problem
of the potential theory, manifold applications have already been made. Especially, Dr. Gram-
reel and K. Pohlhausen have treated, at my instigation, the case of the biplane made up of two
straight monoplanes of the same span, and also, on the other hand, that of a monoplane having a
longitudinal slot. The calculations in both cases are solved by means of elliptic integrals. I

have given the formulas in my Wing Theory II. It may be sufficient here to state the practical
final result, which is referred to the magnitude of the surfaces F'. These surfaces are best
expressed for biplanes in terms of the corresponding surfaces of the monoplane having the same

7r b2' as is easily seen, equals the square of tile factor k, introducedspan. In fact, the ratio F' : 4

in section 26, by which the span must be increased in order to have a monoplane of the same

induced drag. The values of k: for the biplane are obtained from the following table. The gap
of the biplane, i. e., the distance apart of the two wings, is designated by h.

TABLE 2.

Values of k_ = F' : r4b2

h/b= ... O. 0.05 0.10 0.15 0.2 0.3 0.4 i J 0.5 I

k= = .... 1. 000 1.156 1. 212 I. 289 1.352 1. 461 1. 550 1. 626 000 j

The values given in the table may be expressed by the approximation formula

1c__1.027 + 3.8_4h/_b (68)
1 + 1.63h/b

In the case of the monoplane having a slot a suitable comparison wing is obtained by shov-
ing the two halves of the monoplane together until the slot is closed. If b is the original span
and d is the width of the slot, this monoplane has evidently the span d- d. We shall therefore

7r

ratio I_': 4 (b-d)_ and again designate it by kL Calculations gave the following

i
d

] 0.000 o.ool

TABLE 3.

Values of k2 = F': 4 (b-d)2.

0.010 i 0.0316 0.100 0.250 0.500

0.676 0.6200 i 0.568 0.528 0. 506

i
I.. O(X) ;

O. 500 !

! i

It is seen that even very narrow slots produce an important increase in the induced drag.
For a very wide opening/c _ falls to one-half, as may be deduced easily from the fact that now,
instead of one monoplane, _e have two monoplanes of half the span. The values given in the
table may be expressed by the appro+ximation formula

1

k2= 1 - 2 _/1 + 0:35 (log,0 b/d) _ (69)

Figures 55-57 show, at the left, the uniplanar w*-tlow and, at the right, the surfaces F', for a

monoplane, a biplane, and a monoplane with a slot.

F. AEROFOILS IN A TUBE OR IN A FREE JET.

30. To draw conclusions from the experimental results obtained in a tube bounded by
solid walls or in a free jet from a nozzle, it is very useful to know the influence of the neighbor-

ing walls and of the boundaries of the jet upon the phenomena at the aerofoil. We wish indeed
to know the behavior of the aerofoil in an air space infinitely extended in all directions; and the

problem therefore arises to introduce a method for passing by calculation from the case which
prevails in the experiments to that of the unlimited air space. For this purpose we shall next
state clearly the boundary conditions which exist at solid walls parallel to the direction of the
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wind and at tile free bonn(lar_- of a jet. At solid walls, the velocity components normal to the
wall,u'n, Inust e(lual zero; (,n a free jet t)oundary, on the other hand, the pressure is to be put
equal to that of the surroun(ling quiescent air layer, and therefore is constant. We can trans-
form these last relations _ls follows, keeping within our theory of the first order. According to
the Bernouilli theorem, if l" is the undisturbed wind velocity, and u, v, and u, are the additional
velocities

p + _Eu'- + ( V + v): + ,!,2_= po _ _ I "_

or, since p = p.,
u: + v2+ w: + 2 ]'l_ = o.

If we neglect the squares of the disturhanc(, velocities as being small of the second order, we
have as the appr_)ximate initial condition for the free jet. v = o. We proceed a step farther upon
the path indicated to us t)y the appr(,ximation theory of the first order if we prescribe the wdue
v-o, not for the actual jet boundary, t)ut f,)r that cylinder which is given by thesurface of the
undeviated jet. By doing this the t)oundary condition for the free jet becomes very similar,
in a formal way, to that for the s_)lid walls.

The two problems can n,)w be solved in the f()lh_wing manner: We consider tirst the velocity
tield for the unlimited air space, acc()r(ling lo the exposition previously given. This tield offers,
both in the case of the tube _md in that of the free jet, c_)ntradictions with our |)oundary condi-

tions at the wails or the jet t)oundary. We must superimpose a velocity tield which in the
interior of the region e_,nsi(h'red is free of singularities and which on the boundaries has veloci-

ties opposite to th(_se v(,loeity components, the wmishing of which is prescrihe(t t)y the boundary
conditi()n. It is easily seen that 1)y the suFerpositi_)n of this second velocity tield on the original
one the boundary c[)n(litions are satistied exactly. The inlluence of this second tield upon
the aerofoil is n,,w ex'lctly that intluence which we are seeking and which we can calculate

from the results of the theory of aerofoils as soon as this second field is known.
The ad(liti()nal vel()city field corresponds to a pure potential mot.ion; we have, therefore, the

problem of determining its potential _. [n lhe case of solid w_dls we are thus led to the prol)h,m
of finding the potential f_Jr a giv,,n r(,gion (the interior of the rut)e) when the normal component
v,n of the tlow is given at the t)()undary of the region. This is the so-called "second boundary
value problem" of the potential theory. The corresponding problem for a jet, as we shall see
at once, lea(ls to the "iirst bound,_ry wdue problem," in which at the t)()un(lary the values of
the potential ils(,lf are prescribed. According to what has been said above our region is a (:ylin(ler
whose generating lin('s are parallel to the velocity I', hence, parallel to the 7t" axis, and for each

point on the boundary the relation 0y=-v (in which the dashes indicate bmmdary values) is

prescribed. Integrating this relation for each generating line gives

If we go sutliciently far upstream every inlhwnce (,f the aerofoil vanishes therefore for y= - a¢,
eg-o; _md hence y ,:_ is taken as the lower limit of the integral. By this, then, we obtain

the boundary values of the potential _1,(y).

The comph,te calculation of the added potenlial + for the entire interior of the tube or jet is
fairly diiticult. If we concern ourseh'es, however, only with our main problem, to determine
the corrections which must be apl)lie(1 to our experimental results, then we can again assume

that the velocity romp(meals l)erpendiculat" to the axis of the tube in the phme of out" aerofoil
are half as large as at a great (listance behind it. This consideration, which proceeded from the

comparison of a vortex tilament pr,)ceeding to inlinity in one direction only with one proceeding
to intinity in both directions, hohls here exactly as well as in the cases diseusse(l previously.
We can theref,)re pass here as before from the sI)ace prol)leIn to a uniplanar one if we calculate

the phenomemt f_w hehin(I the aerofoil. Our 1),)un(lary conditions for the unil)lan.H" problem arc,
for the tube, w,, -o, for the free jet, ¢,-const. The last condition may be interpreted specially
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conveniently if use is made of the method of tre'ltment of section 28. Since in this, for the end

of the impulse phenomenon, _= o (po-p) dr, _=eonst. inealls simply that _=const., which,

indeed was the original boundary eonditi_)n for the fl'ee jet.

31. The conditions stated in the preceding section can be secured most easily for a jet, or
tube, of a circular cross section. In this ease the added motion is obtained very simply by
assuming for every vortex flowing off an equally strong one outside the circle, at the point out-

side corresponding to the one inside according to tile reciprocal radii. If the direction (if rota-
tion of the external vortex is taken the same "ts that of ttle interior one, ti_en at tile points of
tile circle the boundary condition for a free jet is obtained; and, if opposite directions of rotations
are taken, then the boundary condition for a tube is satisfied. This may be expressed by saying

that there is combined with the aerofoil another obtained by r(41exi(m according to reciprocal
radii, whose eireuhttion at corresponding points is the same in absolute value as that of the
actual aerofoil, and for the jet it has the same sign, but for the tube tile opposite sign.

The exact calculation has been made for a straight monoplane in tile middle of the jet,
assulning the lift to be distributed according to a half ellipse. If b is the span of the monoplane

tand 1) the diameter of the jet, then tlle disturbance velocity _, caused by the jet boundary at
the distance x fr()m the Iniddle of tile jet is

A (1+3 o 5 _ 35 ,. etc.)
7rl)'Zpl_\ 4_'+S ( + 128('+

(70)
/

in which _= 2zb/l) 2.

The added drag calculated from this velocity according to equation (38) is found to be

3 /b X_ 5/b\ s
A_ [1 +16kD ) + 64k])) + ..-] (71)W' = 7rD_p I, _

A similar calculation for a uniform lift distribution gave for the first term in the formula
for the drag the same value as in equation (71). It appe'lrs that the other terms of the series
have but little importance with the usual ratios, so that we can limit, ourselves to the first term.
An approximatiou treatment shows, further that "my sm,dl wing system, in the middle of the

circular jet gives rise to the same expression. We can tilerefore write for the total induced
drag of the wing system in a jet of cross section re, if the surface F' is again introduced from
section 28,

( ')
For a tube of circular cross section tile same disturbance etfeet is found, but with the oppo-

site sign; and therefore we have the approximation f()rmula for the drag

W A -_( 1
=4q\F- 21F,:) (72a)

'rile correction, owing to the considerati(ln of tit(, finite cross section of the jet, is for the
b" 1

ratios ordinarily used not small. For l)=2' it is already one-eighth of the induced drag.

Formula (71) gives 0.1262 instead of 0.125 tile e()rresponding formula for uniform distribution

gives 0.127. It is seen, therefore, that the differences are not great, and that the approxima-
tion formula (72) is satisfactory for most eases.

For a tube ()f rectangular cross section the calculations wouhl have to be made in such a

manner that the aer()foil was mirrored at all the walls an infinite number ()f times, like a cheek-
erboard. Further deveh)pment of the calculation leads to elliptic functions. It has not yet

been carried ttmmgh. One can assume however, that f-r a tube having a square cross section
the influence of the walls will be of at)out the sanle magnitude as for the circle having an equal
area.
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G. APPLICATION OF THE THEORY OF AEROFOILS TO THE SCREW PROPELLER.

32. Tl'm fundamental ideas of the aerofoil theory can he applied step t)y step to the screw
propeller. For the elements of the blades the Kutta-Joukowski formula holds, viz, that the air

force is perpendicular to the velocity c of the element with reference to the air and-that, per
unit length of the blade, it has the value pFc. Corresponding to what has gone hefore, vorti-

dr
cos will arise at the blade, h'tving a vortcx strength per unit length equal to dx" If we wish

again to construct a theory of the first order, that is, if we agree to consider as small the air

forces and the velocities produced by them, then again the proper motion of the vortices will be
small and therefore, in a first approximation m,Ly ag.tin he neglected. The vortices then have
the shape of screw lines and form vortex ribbons which--if for the sake ef simplicity we assuInc
straight radial blades--have the shape of ordinary screw surfaces.

The calculation of the velocity field of a screw vortex is markedly more complieatcd than
that of a rectilinear vortex and leads to functions which thus far have not been studied in detail.

In spite of this it is possible, as Dr. Betz has shown, to prove a series of general theorems very

similar to those of Munk for multiplanes. Since the vch)city c is not the s,mle at the scparate
blade elements, we must speak of the "work lost" where Munk speaks of drag. The work al)l)lied
for the motion of the propeller is composed of two parts--useful work + work lost. The latter
in our ideal case, where friction is excluded, is transformed completely into kinetic energy of the
air. The kinetic energy stands ag'fin in close connection with the vortex system pr.dueed by
the propeller. Betz proved, among others, the following theorems:

(1) [f two elements of a propeller blade lie upon the same radius at dist.mces x and ,_ from

the axis, then the work lost at the point ( due to the disturbance velocity caused 1)y the air
force at the point x is equal to the work lost at the point x owing to the disturbance velocity
caused by the air force at the point ,_.

(2) This theorem must be somewhat modified for two elements which do not lie on the same

radius. It reads: The work lost at the point ( due to the disturbance velocity caused 1)3- the
air force at the point x is of the same amount as the work which would he lost at the point x if
tl)c screw vortex proceeding from the clement at ( were to pass out forward in the proh)ngation
()f the actual vortex instead of going backward. _2

(3) This last theorem leads at once to the following relation for the sum of the two amounts
of work lost: The total work h)st due to the mutual action of the air forces by two blade elements
,tt points x and ( is the same as the work which would he lost at one point alone if the screw vor-

tex proceeding from the other point were to extend to infimty both forward and backward.
It is easily seen that this theorem is perfectly analogous to the stagger theorem of section

25, for if the vortex of the inducing elemcnt extends in both directions, then the position of the
element itself on its own vortex strip is immaterial as far as the velocity field produced is con-
eerned. _'_ It is therefore true of screws that nothing is changed in the total encrgy-h)ss if blade

elements are displaced in any wa_', without change of their air forces, along the relative stream-
lines passing through them (i. c., in this case, screw lines). This naturally is connected again
with the f'_ct that the total amount of tlw energy loss depends only upon the iinal distribution

of the vortex systems, not upon the relative position of the places where the separatc vortices
arise.

Theorem No. 3 will be of use to us also in what follows. It can be made clearer by the fol-
h)wing consideration. The tield of the vortex rihbon of a lifting element dies away very quickly
forward of the element, but in the rear it extends over the entire length of the path traversed.

If the sum is formed of the two mutual losses in work of two elements at the points x and _,we
can pr(_ceed, owing to the stagger theorem, to displace one of the two elements along its screw
line so far backward that its veh)eity field is no h)nger appreciable at the position of thc other

l_ In this the sense of rotation of the transverse vortex is to be reversed.

I_ The transverse vortex in this case cal_cels out completely in the determination or the velocity field, since it appears tw_'ce with opposite
senses of circulation.

20167--23--14
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undisplaeed element. At tim same time, however, the influence of the latter element upon the
first is increased since its vm'tex ribbon, viewed from the new lmsiti,m of tile first element, ex tends
as far forwaM as backward. The sum of the two mutual h,ss(,s in work is reduced in this manner

to tim loss which ttle velocity fiehl of the front element produces upon the displaced one) 4
(4) The most important of Betz's theorems, fronl a pra(qical standpoint, furnishes the com-

plete analogy t.o Monk's the_rem com'erning the wing s)-stem having the least drag, "rod, era're-
spending perfectly to the statemeuts in sections 27 and 28, lnay 1)e expressed thus: The tlow
behind a propeller having tile least loss in energy is as if the screw surfaces passed over by tile

propeller blades were solidified into a solid figure and this were displaced backward in the
nonvisemts fluid with a given small vehmity. The potential differ-
ence between the front and rear sides of .t screw surface at one and

the same point furnishes, then, _lgain the cireulafi<m P of the <'orre-
spending point ,ff the propeller blade.

A short proof of theorenl -t will be given. For this purpose the
l)rincipal equations for the action of a screw must first be deduced.

The _erew is im'tgined to be displaced with the velocity v relative
za

to tile air, and to rotate at, the same time with the angular veloeilv 0.,.
i.m. 5"L--Velocity field neara bl:xde .'k blade element at the distance x fl'otll the axis has then, with ref-

Of a 3erew-proFoller.
erence to tile air whi('h in the lheory of tile tirst order may be

assumed to be at rest, the velocity c, with the comp.nents v and x:,. (See fig. 58.)
If no vortex were produced, then, with the assumption of a nonviseous fluid, au air force

dP wouht arise, whivh aeeoMing to tile Kutta-Joul_owski theorenls would be perpendicular
to the velocity c and would have the value, for a blade elen,ent ,f length dr,

dP = pl'cdz (7:')

The force dP is dec,reposed into two components, of which the one in the direction of c
interests us specially, since it, is applied to the screw. This component is

dS - dP . eos _ = pFxo.,d, (74)

The tol_al thrust, if there are n blades, is then

s o z/r, d, (rsi
l.] o

Tile other component
d_f-dP sin e =pI'v dz (76)

furnishes a contribution as 't torque to the rotation re(relent.. It is seen 'tt once that dS . v-
d'[ • x o0, i. e., the useful thrustwork is equal to the work done hy the torque hitherto used
in our calculations. This depends immediately up(m our assumption that tile force dl' is

perpendicul!tr to the velocity c. But the screw blades aetu.tlly produce a vortex system and
we must, ask as to the reaction of the w_rtex systenl Ull,,n the l)henomena of a screw. We
shall assume, exactly as in the aerofoil theory, that we turll the blade profile in such a manner

that the lifting forces desired by us actually eome into play. Since we are interested here

merely in the loss in work caused by the vortex system, we have to do only with the drag
components catlscd by the vortex system. This depends, exactly as before, upon the velocity
component perpendicular to the velocity of motion of the eh'ment, whivh in this ease equals c.
We shall again designate it by w. The added velocity c, mqmnent w furnishes a drag in lhe
direction of motion equal to

d(d = dP w =pI'w d_' 177)
C

The loss of work per second is therefore

d(2 . c=pFdx . w . c (--dP . w)

l, This process of thought can be appeal, naturally, in the same way to aerofoils aim furnishes a ednvenient deduction for tile sum of the

drags IVL: k ITS,.
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If now, according t(i figure 5S, we put c :v/sin E, our problem is to m,lke a minimunl tile total

loss of work

'_S rl''vd'c (78)L pt' Sill e

The variation of this quantity must therefore be put equal to zero. We shall proeeed, for

this purpose, simihu'ly to the wa.y Mitt ICs theoreln was deduced in section 27. We shall

change 1)y small amounts the cireulati,n at, tw,) plact,s, which may reach froill :1'I to ,Vj.-] tlX 1

and fr.m :., to a'=, _ d.r2, in such a mnnnt'r flint the h)tnl thrust rein'tins unchanged. According

to equation (75) we nmst make
61'j . xtd. q +51"2 . a'=,dy..,=o (79)

Exactly as before the eondit,ion for t ht_ inininunn is ol)tain('d if the loss of ent'rgy (hie to our

added cireubOAon remains unch,mged. In order to ('.th:ltlate the loss;, let, us make use of

t,heoreln No. 3 and ,lSSUllle thltt, the added wing fm'c(,s are brought into action far behind the

propeller so that, the loss is ira,rely the pl'c,dtact, of the added "fir force by the vehmity us*
which arises from the vm'tiees .f the pr.peller, and therefore for the lirst, eh, ment is t!qual to

"q* d.q. Omitting the constant fa('tm', we obtain as the mininlum eondition--
pv_l'_ sill e

wj* d,r,+51' 2 w2* d.r.,:-:o,
5l't sill e t sill t 2 "

fro,n which i_ derived, making use of equation (79)

fct* = w=,* = c¢ rest. (SO)
a'_ Sill q X2 sin q

We must, compare this condition with that ol)tained for tim velocity components normal

to a rigid screw surface, when this surface is moved 1)ackward with the , _ :

velocity w'. We then have (see fig. 59) : .------_N---_--'--.

'_Un _ IIor COS E.

But on a screw surface tile pitch It is connected with the angle of pitch e _-

and the r,tdius x by the rel.ttion h= 2_rx tan e..... -_- //

Mldtiplying this last, eqltation with that for m., and st)lving, we get - _- __ _

2rrw' x sin _ .h/_4
_.n= /_ • - 7_: _ / )

and therefore ..... : _ >

u), = elms(. {Sl) ...... :
J: Sill e --- .-__

(In eonq/aring (8l) with (St)) it is seen that by a suitalAe choice (if ,c' the

v;thl(' of w_, can always lie made to agree with that ()t' r':, which p,'oves Fm. SO.--Idean_e,lvortex sys-
tem of a screw-propeller.

Belz' theoi'(,ln.

33. Ill el'cleF to leal'n IlI()IT' IlCeUl'Itio[y l]10 ilat, ul'e of the distribution of circulation which

We al'e set,king, we shall proceed as if the velocity [ieltl at great ([is(anct,s ft'oln tile screw is t)ro-

dueed t)5" h'tving the velocity ,:' in the (lit'cellos of the axis ilnl)arted impulsively to tile rigid

ligure composed of the screw surfaces. [n a purely qualilntive way one can see that with any

syst,e,ll (if screw surfaces having a small pilch the air ill the interior (if the system is actually

accelerated backward, with, (if (:(lurse, the ,,q)peai'alle(' (}f tangential velocity components whose

intensity is a function of the .ingle t and is greatest for e = 45 °. At the axis itself there is neither

an "txial nor tL tangential aeeeh'r'ltion. Less simple are the conditions nmn' the miter I)oundary

of the screw surf(tee where a lh)w around the edges of the surfaces occurs.

In order to obt,ain a quantitative statement, we shall for simplieity's sake next think of a

screw having a large nulnber of l)lades. Our rigid ligure consists, then, of a very htrge number
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of screw surfaces, lying (:lose together, and therefore the air is led with diiticulty into lhe interior.

When the impulse occurs it escapes in (he direction ()f the normals to the screw surface. The

radial velocity componenls w_ will be appreciable only in tile neighborhood of the outer boun-

dary of the screw surfaces fro'thor in, we may put it equal to zero approximately. For tile

tangential components wt amt the axial components u,,, tile relations hold, as is easily seen,

_b' t = W* sin _ = Yd t COS E Sill e

_/_a = _L'* COS (= UJ COS 2 e.

The angle may be expressed by writing
h v F'

tan e 2_-x xw x (82)

In this, for brevity's sake, 27r=_ is put equal to r' (r' is that radius for which the i)iteh of the

screw, tan _, = 1). Then
r _ x

sin _= and cos e = (83)
_'r _: q-x 2 %"r '2 -fix"

and hence
r'x x 2

'wL= W' • r, _ +x 2 and w, = W'r, z + a"2 (_4)

We must now detern_ine the circulation aroun(t the separate blades as a function of the

radius x. For a screw with _ blades the total circulation of the vortices inside tile circle of

radius z coincides with the line integral for the closed circle of radius x; this circulation must

evidently equal nl', where 1' is the circulation of one of the screw blades at

t tile point x. From this we have

_IIi 1"= 27rx. Wt 27rr'w' x 2 (=t,w_') (85)

1_ : _ " r '_ -q-x _ ',, I_ /

The curve for F ac'cording to equMion (_5) is shmvn in curve 1 of tigure fi2.

At tile ends of the blades we wouhl expect to lfftve '_ decrease of the eir-

culfftion of the same character as found for aerofoils. An approximate treat-

! nlent can be devised in the following way: We imagine an intinite series of
aerofoils which have "t distance apart a and are not, staggered and which

, able distribution of lift near the ends of these aerofoils. The distance a is

i then to be made equal to the perpendicular distance apart of the edges of

Fm.t;I).--t'onfornmltrans- tWO consecutive blades of the screw, i. c., aee,,r,ling to figure 59,
forlIl at iOll

]l. 27rr' r:
o = cosz=.Io_,_ t+_ . f/ It It -i-, r':

The prol)lem now, aceoMing to the procedure of section 28, may be solved by seeking the p(,-

tential flow around the edges of the corresponding family of planes and by determining the dis-

continuity of potential at the phmcs. This problem may be solved without difficulty by me'm_

of eonformal representations. (See see. 103 It can be shown that the plane with the straight

cuts as shown in figure 60, which we shall call the z plane, may be transformed into the unit

circle (t plane) by the fornmla

-r log 2 t+ t (87)

The tlow of figure 58 is transformed thereby into circulation flow around the unit circle;in fact

(P + i q' = iC log t

After a short calculation, by elimination of t we have

a _ + i,I,
z= log cos (88)

v C
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For the surface around which the flow takes place, and which is given by the streamline ¢ = o,

we have, therefore,
a _I,

x= log cos C
or

xw

4)= =i=C cos-' e _ (89)

which gives the real values for negative values of x. The potentials thus obtained or the

( a)velocity equal to 1 of the free flow to obtain which C must be put equal to _r ' which, accord-

ing to what has gone before, give us the surface F', form a picture such as is shown in figure

61. By means of this one can form a definite judgment as to how the eireulation, and with it
the thrust also, decreases at the blade tips. We can replace the shaded portions of Figure 61
by a straight line, having an equal area below it which, in accordance with -!
the integration performed, must lie behind the blade tips at the distance

a' = a log ; = 0.2207a (90) -_x

We conclude from this that, with screws also, the decrease of circulation

at the blade tips has about the same effect as if the screw had a radius dimin-

ished by 0.2207(_ and then the air would be considered uniform in every circle of
radius x (as would he the case for a screw having an infinite number of blades), r_G.61.--Potentialel)-

The properties found for the inner portion of the screw and for its edge t_i._dl,yth_,o,,,or
may be combined into a single formula, which can be applied as an approxima- ae_60.
tion formula also for screws having a small numher of blades. This formula is obtained by

2 -_ (r-x)

multiplying the value in equation (85) by the expression cos -_ e ._ , which for large values
7r

of r-x takes the value 1. (For -x of formula (89) r-x is here substituted, as is obvious.)
a

Thus we obtain the formula

F= 4 , , X 2 -,_(r-x)
n r,2+X2 • cos -I e a (91)

3'he curve of F according to equation (91) is given in figure 62, for a 4-blade screw and for
r': r = 1 : 5, which correspond to average conditions in practice.

The whole deduction holds, as has already been remarked, for screws which are not heavily
loade(1. For screws with heavy loads an improvement can be intro-

,_sy_pto/e . z duccd by calculating the pitch of the screw surfaces formed by the

__s vortices, corresponding to the state of flow prevailing in the circular
V

...... /r' _a'- plane of the screw. Instead of writing tan _ = x_' we must write, more
Q

V+u2 _
Fro. {;2.--Distribuficn of circu-

..... , in which V is the velocity of flight, since in
lation. I. lnfinile number of exactly, t'tn _ _'t
blades. II. Four blades a is XCO--
1he disl:irwe f_f _wo vortices. 2

(s_ l i:. ;,_ the screw disk plane half of the final distm'hance velocities is already

present. A useful approximation is obtained if, retaining our formulae, v is put equal to V+ 2 '

'aft

and therefore r' is put equal to V+ 2.
¢o

After the circulation is known, the distribution of thrust and torque may be calculated

easily by means of equations (74) and (76), and thus, following the method used in the aerofoil
theory, the requisite widths of the blades and angles of attack may be determined in order that

for a given working condition (i. e., r' and w' given), in which the screw is to have the most
favorable performance, all the information may be deduced from the theory. By taking into
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account the more exact velocity relations in the propeller-disk plane this information may

be improved.

The aerofoil theory has numerous further applications. An investigation of curved flights
specially of the moment--important in discussions of stability--around the longitudinal axis in the
case of a wing moved in a circle, is at present being made, also the calculation of the moment
of a warped wing. A series of not unimportant single questions must w,fit for a further im-

provement of tile theory, e. g., various conchtsions specially concerning properties of profiles,
influence of curvature, etc., can be re'tehed, if we pass from the lifting line to the case of a load

distributed also along the chord; for the t re'ttment of a wing set oblique to the direction of
flight the qsSUml)tion of a lo,M distributed along the chord is necess,_ry since in this case the
comtitions contradict the "lifting line." Investigations of this kind, which can be accom-

t)lished only by very comt)rehensivc numerical calculations, were begun during the war but
since then, owing to tt lack of fellow workers, have had to remain unfinished. A similar state-

ment also applies to'the calculations of a flapping wing already begun, in which one is likewise
forced to ,tssume the lift distrit)uted 'along the chord, since otherwise the result is indefinite.
Therefore much remains to t)e done.

MOST IMPORTANT SYMBOLS.
o =density.

V =velocity el" lho airplane.

u, v, w=velocity components in the X, V, Z directions. (In the case of an airl)hme X is in the dir,ction of the
span of the wings, Yis in the direction of flight Z is vertical.

p T/a
(/= 2 =dynamical prcssnre.

b =span of a wing (" Breite").

t =chord of a win_ ("Ti(,f_").

h =gap of a biphme (" I[She").

F =area of sm'face (--:h . t) (" FI/iche").

A =lift ("Auftriel)").

IV =drag (" Widerstand").
A

¢, = Fq=lift coefficient (=2 Kv "al)solute").

IV , ¢,
cw=/,,q =dra.. coefficient (=2 K, "at)solnte %.

a =angle of attack.
P =circulation.

el, =velocity potential.
_p =stream function.
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